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Introduction

Introduction

Mathematics is an art of finding patterns. As a combinatorialist, we deal
with a lot of sequences. The process of determining some patterns of
given sequences is essentially important. The common ways to explain the
sequences are by their recurrence relations or generating functions.
Polynomial as sequences, C-finite sequences (constant coefficient linear
recurrence) and Holonomic sequences (polynomial coefficient linear
recurrence) are the most common ansatzs as pattern searching of each
sequence. Here we are on the expedition for a new ansatz that can explain
a bigger class of patterns.
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Introduction

Polynomial as Sequences

The sequence {a(n)}52, satisfies some polynomial equation:
a(n) = cxn® + c_n* + L+ an+ co,

where k, ¢, c1, ..., ¢k are fixed numbers.

1 1
Example 1: Let a(n) =1+2+---+ n. Then a(n) = 5nz + -n.
For a(n) as a general polynomial of degree k, we notice that the degree of

b(n) := a(n+ 1) — a(n) goes down by 1. Apply this process k + 1 times,
we will obtain the zero sequence,

(N —1)*a(n)=0, n>0,

where the shift operator N - a(n) = a(n+ 1).
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Introduction

Polynomial as Sequences

Example 2: a(n) := n? — 2n satisfies
a(n+3)—3a(n+2)+3a(n+1)—a(n)=0, n>0,

where a(0) =0,a(1) = —1,a(2) = 0.

It follows that the generating function

Z a - (1 il()):))kJrl’

n=

where g(x) is some polynomial of degree at most k.
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Introduction

Polynomial as Sequences

Some closure properties of polynomial as sequences:
Let a(n) and b(n) be a polynomial as sequence of degree r and s.
@ {a(n)+ b(n)}32, is also a polynomial as sequence of degree at most
max (r, s).
@ {a(n)- b(n)}52, is also a polynomial as sequence of degree at most
r+s.

@ {37 pa(i)}ao is also a polynomial as sequence of degree at most
r+1.
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Introduction

C-finite Sequences

The linear recurrence relation with only constant coefficients ([3, 4]) i.e.

the sequence {a(n)}>2, where there are constants k, ¢y, .

<oy Ck—2,Ck—1, Ck
such that

a(n)+ca(n—1)+---+ck_1a(n—k+1)+cxa(n—k) =0, forall n> k.
In this case, we say a(n) satisfies a linear recurrence of order k. The

polynomial as sequence is the special case of C-finite sequences.
The generating function

i a(n)x" = q(x)

prd 14 ax+ox? 44 gxk’

where g(x) is some polynomial of degree at most k — 1.
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Introduction

C-finite Sequences

Examples:
@ (Fibonacci sequence) a(n) = a(n— 1) + a(n — 2) , where
a(0) =0,a(1) =1.
@ The sequence {a(n)}o2,

2,3,5,9,17,33,65,129, 257,513, 1025, ...
satisfies the recurrence relation
a(n)=3a(n—1)—2a(n—2), n>2.

and its generating function can be written as

= ~(3x—2)  —(3x—2)
;)a 2x—1)(x—1) 2x2 —3x + 1
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Introduction

C-finite Sequences

Some closure properties of C-finite sequences:
Let a(n) and b(n) be C-finite sequences of order r and s.

@ {a(n)+ b(n)}32, is a C-finite sequence of order at most r + s,
@ {a(n) - b(n)}>2, is a C-finite sequence of order at most rs,

© {371 a()}no is a Cinite sequence of order at most r + 1,
Q {a(mn)}>2,, me Z" is a Cfinite of order at most r.
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C-finite Sequences

This closures properties are very useful for proving identities. For example
to prove that
Fon = 2F,Fpy1 — F2, n>0,

we only define
a(n) := Fan — 2F,Fop1 + F2, n>0

and calculate the upper bound for order of a(n). Then we verify
numerically that a(i) =0, 0 </ < d where d is the upper bound of order.
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Introduction

Holonomic Sequences

The linear recurrence relation with polynomial coefficients ([3]) i.e. the
sequence {a(n)}%2, where there are integer k and polynomials

po(n), p1(n), ..., pk—1(n), px(n) (po(n) # 0), each of which has degree at
most d such that

po(n)a(n)+pi(n)a(n—1)+---+px_1(n)a(n—k+1)+ px(n)a(n—k) =0,

for all n > k.
The C-finite sequence is the special case of holonomic sequence.
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Introduction

Holonomic Sequences

Examples:
@ (Factorial) a(n) = n-a(n—1) , where a(0) = 1.
@ (Harmonic numbers) H, =1+ % + % +ooF % satisfies the relation:

(n+1)H,— (2n+3)Hpy1 + (n+2)Hp12 =0, n>1.

The combinatorics people have applied this in their works for quite some
time. But it has become very popular since the invent of computer algebra
like Macsyma (early 70s) or Maple (early 80s). (Although | wish Maple had
this command built-in.) It is the most commonly used ansatz right now.
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Introduction

Holonomic Sequences

A holonomic differential equation (aka holonomic function, D-finite
function)

Let f(x) =Y 72 5a(n)x". Then f(x) satisfies the relation
Go(x)f (x) + @ () (x) + - + () F ¥ (x) = 0,

where gj(x) are some polynomials of degree at most d.
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Introduction

Holonomic Sequences

Some closure properties of holonomic sequences:

Let a(n) and b(n) be holonomic sequences and A(x) and B(x) be their
generating functions.

@ {a(n)+ b(n)}52, is holonomic,

@ (Cauchy product) A(x)B(x) and (Hadamard product)
{a(n) - b(n)}52, are holonomic,

@ {371 a(j)}ao is holonomic,

Q {a([un+ v])}°2, is holonomic for any non-negative rational number
uand v.
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Introduction

Polynomial-Recursive Sequences

The sequence {a(n)}52, where there are a polynomial with r + 1 variables
such that

P(a(n),a(n—1),...,a(n—r)) =0 foralln>r.
Example: (Somos sequence) Somos-4

a(n)-a(n—4)—a(n—1)-a(n—3)—a(n—2)>=0, n>5

Michael Somos is well known for his sequences. To some surprise, the
sequence contains only integer values. Several mathematicians have
studied the problem of proving and explaining this integer property of the
Somos sequences.
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X-Recursive Sequences

X-Recursive Sequences

We introduce the new ansatz that generalize the holonomic ansatz. We
first give an example.
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X-Recursive Sequences

X-Recursive Sequences

A hint to Somos-like sequence
Consider a sequence a(n) generated from a nonlinear relation

0 = a(n)a(n+1)a(n+3)—a(n)a(n+2)*>—a(n+2)a(n+1)?, for all n > 0.

where a(0) =1,a(1) =1 and a(2) = 2.
Some of the first terms of this sequence are

1,1,2,6,30,240, 3120, 65520, 2227680, 122522400, ....

This sequence is growing too fast to be C-finite or holonomic, but still
simple enough for human to detect the pattern. Can you guess?
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X-Recursive Sequences

X-Recursive Sequences

Answer:
a(n) = Fpy1-a(n—1), ap =1,

where F, is the Fibonacci sequence. This example suggests the new type
of ansatz that might prove the integrality of Somos-like sequences.
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X-Recursive Sequences

X-Recursive Sequences

X-Recursive Sequence
The sequence {a(n)}72, where there are a linear recurrence with the
C-finite sequences coefficients.

Cona(n) + G pa(n—1)+ G pa(n—2)+---+ Cepa(n— k) =0

where each of the sequences C; ,, 0 </ < k are C-finite.
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X-Recursive Sequences

X-Recursive Sequences

More Examples
Q a(n)=a(n—1)+2"a(n—-2), ag=a; =1
Q@ a(n)=F,-a(n—1)+ Fh_1-a(n—2), a(0) = a(1) = 1. This
sequence is A089126 in Sloane.

-1
© (Summation) a(n) = ”z: Fi-a(i), a =1
Some of the first termls:gre
1,1,2,6,24,144,1296,18144,399168, 13970880.
It is not too hard to show that this sequence fits into the new ansatz.
a(n)=C,-a(n—1).
where C, =2C,_1 — C,_3 with (G =3,(G3 =3 and (4 = 4.
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X-Recursive Sequences

X-Recursive Sequences

Generating Functions
Example 1: Let a(n) = F, - a(n —1). Then

f(x)= Za(nx —ZF a(n—1)x" —xz aa] +oal)-a(n—1)x"

n=0

:c{xZaﬂr-a(n —i—CZXZa - a(n)x"
n=0

= ¢y xf(aqx) + chxf(a_x),

where a and o are the roots of equation x> — x — 1 = 0.
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X-Recursive Sequences

X-Recursive Sequences

Example 2: Let a(n) = (n+1)2"-a(n—1). Then

=Y a(n)x" =3 (n+1)2"-a(n - 1)x" —2XZ +2)2" - a(n)x"
n=0 n=0 n=0

oo oo
= 2x° Z n2" - a(n)x"7t + 4XZ 2" a(n)x"
n=0 n=0

= 2x°f'(2x) + 4xf(2x).
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X-Recursive Sequences

X-Recursive Sequences

Closure Properties of X-recursive sequences Let a(n) and b(n) be
X-recursive sequences.

@ {a(n)+ b(n)}52, is X-recursive,
@ (Cauchy product) c(n) :=";_,a(k)b(n — k) and (Hadamard
product) {a(n) - b(n)}°, are X-recursive,

Q@ {371 a()}no is X-recursive,

Q {a(lun+ v])}>2, is X-recursive for any non-negative rational number
uand v.
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X-Recursive Sequences

How to Guess

The biggest problem of this ansatz is the calculation. We demonstrate the

calculation by using the example where a(n) satisfies linear recurrence of
order 2

a(n) = Gy pa(n—1)+ Gpa(n—2), n>2,

and that C; , and G, , are C-finite of order 2. We then need solve the
system of equations

a(n)=Cpa(n—1)+ Gra(n—2), 2<n<N,
Gr=aCpi1+cCGpo 4<n<N,
Gn=d1Gp1+dGpo, 4<n<N.

Total we have (N —2) + (N —4) + (N — 4) = 3N — 10 equations and
2(N —2) +4 = 2N variables. Therefore we must choose N > 10 in order
to guess the patterns.
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X-Recursive Sequences

How to Guess

The reader may already notice that these are the system of non-linear
equations. It seems like the computation is taking too long for any
practical purpose.
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X-Recursive Sequences

Some Remarks

At the end, we did not go very far with this new ansatz. The first problem
is the slowness causing by solving the system of non-linear equations. This
makes the guessing very difficult. The second problem is that the other
well known non-holonomic sequences like Bell numbers, Somos-4,5,6 do
not seem to fall in this class. So it is not as helpful as we might want it to

be. Nonetheless it is useful to keep this in mind, it could be helpful when
we need it one day.
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DD-finite Generating Functions

DD-finite Generating Functions

During my presentation on X-recursive sequences in 2017, | was informed
by Christoph, my colleague from RISC, Austria that there were a group of
people at RISC leading by Veronika Pillwein working on similar idea, [2].
But instead of generalizing the sequence, she generalized the generating
function.
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DD-finite Generating Functions

DD-finite Generating Functions

DD-finite functions
Let f(x) := Y 02 ga(n)x". f(x) is called a DD-finite function if f(x)
satisfies the relation

Go(x)F(x) + qr()f'(x) + - + a(x) ¥ (x) = 0,

for some constant k and D-finite functions gj(x), 0 </ < k.
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DD-finite Generating Functions

DD-finite Generating Functions

Some examples of these functions are

@ *f(x) — f'(x) = 0. Here f(x) = C - e". The coefficient satisfies the

relation .
(n+ Da(n+1) =3 2K
kZO(

We note that if C = e™!, f(x) is the (exponential) generating
function of the famous Bell numbers, b(n).

By substituting a(n) =: b(n)/n!, we have the relation

b(n+1) = Z (Z) b(k), b(0) = 1.

k=0
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DD-finite Generating Functions

DD-finite Generating Functions

@ f(x) —sin(x)cos(x)f’(x) = 0. This time f(x) = C tan(x). From this
equation, the coefficients a(n) of f(x) satisfies the relation
n—1

(1 —n)a(n) = Z kcn_ki1ak, ap =0,a1 =1,
k=1

—4
where ¢, = )Ck_g, c=0,c0=1.

k(k —1
X
Q ((x —1)eX+1)f(x) + x(e* —1)f'(x) = 0. Here f(x) = e
is the exponential generating function of the Bernoulli numbers. From
this equation, the coefficients a(n) of f(x) satisfies the relation

which

n—1

N . a(k)
a(")__g(nﬂ—k)!‘

k=0
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DD-finite Generating Functions

DD-finite Generating Functions

These three classic sequences satisfy the differential equations of order 1.

The closure properties of DD-finite functions was derived in [2] too. Let
f, g be DD-finite functions of orders r and s. Then

Q f + g is a DD-finite with order at most r + s.
@ fg is a DD-finite with order at most rs.

LT LT WA X i N BV BN AT ET L EM (VB I Sequences: Polynomial, C-finite, Holonomic, . Jan 22, 2020 33 /35



DD-finite Generating Functions

It is suggested, from the examples, that the ansatz for the sequences
should be

Z cnjon(n—1)...(n—k+1)a(n) + ..+ Z cnjka(ln—k)=0.
j=0 =0

where, for each /, ¢, are 2-dimensional holonomic sequences in n and j.
However giving a sequence, it is still difficult to determine whether its
generating functions is DD-finite. We runs into the same problem for
solving system of non-linear equations as in the X-recursive case.
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