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Dissertation Director: Doron Zeilberger

This thesis is a contribution to the emerging field of experimental rigorous math-

ematics, where one uses symbolic computation to conjecture proof-plans, and then

proceeds to verify the conjectured proofs rigorously. The proved results, in addition

to their independent interest, should also be viewed as case studies in this budding

methodology. We now proceed to described the specific results presented in this disser-

tation.

We first develop a finite-state automata approach, implemented in a Maple package

ToadsAndFrogs, for conjecturing, and then rigorously proving, values for large families

of positions in Richard Guy’s combinatorial game “Toads and Frogs”.

In particular, we prove conjectures of Jeff Erickson. We also discuss the values of

all positions with exactly one ¤,Ta¤¤Fa,Ta¤¤¤FFF, Ta¤¤Fb, Ta¤¤¤Fb.

We next consider the generalized chess problem of checkmating a king with a king

and a rook on an m × n board at a specific starting position. We analyze the fastest

way to checkmate.
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We also consider a problem posed by Ronald Graham about the minimum number,

over all 2-colorings of [1, n], of generalized so-called Schur triples, i.e. monochromatic

triples of the form (x, y, x + ay) a ≥ 1. (The case a = 1 corresponds to the classical

Schur triples). In addition to giving a completely new proof of the already known case of

a = 1, we show that the minimum number of such triples is at most n2

2a(a2+2a+3)
+O(n)

when a ≥ 2. We also find a new upper bound for the minimum number, over all r-

colorings of [1, n], of monochromatic Schur triples, for r ≥ 3.

Finally, in yet a different direction, we find closed-form expressions for the second

moment of the random variable “number of monochromatic Schur triples” defined on

the sample space of all r-colorings of the first n integers, and second and even higher

moments for the number of monochromatic complete graphs Kk in Kn. In addition to

their considerable independent interest, these formulas would hopefully be instrumental

in improving the extremely weak known lower bounds for the asymptotics of Ramsey

number.
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Chapter 1

Introduction: Summary and Background Stories

During my years in graduate school, I learned the philosophy and methodology of using

computers in mathematical research from my advisor, Professor Doron Zeilberger.

In my opinion, it is not very important in what mathematical area I am working

on, since the experience gained in doing computer-assisted and computer-generated re-

search in one area are likely to be transferable to other areas.

Richard Hamming (1915-1998), a great applied mathematician, said “the purpose of

computing is insight, not numbers”. Insight leads to understanding. Computation gives

me insight in two different ways. First the act of programming makes me understand

the problem much better, and at a deeper level; second, the output often leads to fur-

ther understanding. Once we collect all the information, we see the big picture without

worrying about the details of the computations. I like to solve challenging problems,

and it is always the case that computer programming helps the computational parts go

smoother.

We can divide this thesis to 4 main independent parts.

1) The Combinatorial Game Toads and Frogs.

2) Generalized Chess endgame problems .

3) Ramsey Theory, in particular, the minimum number of generalized monochromatic

Schur triples in r-colorings the first n integers.

4) Symbolic Moment Calculus and its applications.
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Let me now give some background, and future plans, for each of these problems.

1.1 The Combinatorial Game Toads and Frogs

The modern theory of combinatorial games was developed by J.Conway, E.Berlekamp,

and R.Guy, who wrote the classic book Winning Ways, that mostly deals with parti-

zan games, and by Aviezri Fraenkel and his many students, who study impartial games.

The combinatorial game Toads and Frogs was introduced for the first time by

Richard Guy in [1]. In 1996, Jeff Erickson [4] performed a more detailed study, and dis-

covered more patterns. He made six conjectures at the end of his paper. In 2000, Jesse

Hull proved one of his conjectures. He proved expilicit formulas for the game-values (in

the sense of Conway) for certain infinite families of game-positions. These values imply

that Toads and Frogs is NP-hard, in general. All the other five conjectures were still

open, and four of them are settled in this thesis.

At the beginning, I wrote a program in Maple to calculate values of specific “Toads

and Frogs” positions. Using this data, I developed (in collaboration with Zeilberger)

an algorithm called symbolic finite state method, that allowed us to perform automated

proofs of explicit expressions for the values of many infinite families of game-positions.

This algorithm was fully implemented in Maple.

In Chapter 2, I will introduce the symbolic finite state method and illustrate it with

examples. In Chapter 3, I describe how to make a database of the values for each such

class of “Toads and Frogs” position. These values all come from the symbolic finite

state method. In Chapter 4, we explore the more general patterns of positions that

seemed beyond the scope of the (fully computer-generated) finite state method, and

that, at least for now, required human intervention, and are merely computer-assisted.

We present new tables, formulate further conjectures and talk about possible future
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work. In Chapter 5, we prove the values of positions with even more general patterns

than those found in Chapter 4. These positions could not (yet) be proved by computer

program, and were done, in part, by hand.

Combining computer and human efforts, we settled four of Erickson’s conjectures:

three are positive and one is negative. The last conjecture is still open.

In the future, we hope to apply the finite state method to other combinatorial games,

especially the rook endgame problem which we will talk about in chapter 6.

1.2 Problems in Generalized Chess endgame problems

Chess was my favorite hobby when I was in college. My dad does not like to see me

play chess, since he thinks that it is a waste of time, but my advisor is very interested in

chess endgame problems, since he believes that they have an interesting mathematical

structure, so I was fortunate to combine “business” with “pleasure” in the present

project.

When we started the project, he bought me the classic chess book [2] written by

Capablanca, the third world chess champion. The first diagram in that book depicts

an endgame problem featuring the two kings and one white rook, and the problem is to

find the smallest number of moves for White to checkmate for a given starting position

P . We call that number C(P ).

The rook problem is original and elementary. We wrote a program called Rook to

find C(P ). We found an improvement from the moves Capablanca suggested in his

book. We also investigated the rook endgame problem on an m × n board instead of

the usual 8× 8 board.

I found a way of applying the symbolic finite-state method to the rook problem to
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solve for C(P ) for all positions on a k × n board where k ≥ 3 is fixed. It is also of

interest to find out whether C(P ) ≤ m + n for every position P of rook problem on an

m× n board for all m ≥ 3 and n ≥ 3 using the finite state method.

1.3 Problems on the minimal number of monochromatic Schur Triples

In 1916, I. Schur [11] proved that for every r ≥ 2, there exists a least integer n = S(r),

such that for every r-coloring of [1, n], there exists a monochromatic solution to x+y =

z. The integers S(r) are called Schur numbers. For example S(2) = 5. On the interval

[1,4], you can color the integers with [r,b,b,r] with no monochromatic Schur triples. But

on [1,5], you will always have at least one monochromatic Schur Triple for each and

every one of the 25 ways of coloring the first five integers.

In 1995, Graham, Rodl and Rucinski proposed the following problem: Find the

asymptotic minimum number of monochromatic solutions to the equation x + y = z

amongst all 2-coloring of [1, n]. The problem was solved independently solved in [9] and

[10]. Another proof was given later in [3]. The answer is n2

22 + O(n).

Shortly after, Graham generalized the problem and asked for the asymptotic mini-

mum number of monochromatic solutions to the equation x + ay = z, a ≥ 2 amongst

all 2-colorings of [1, n]. An analogous problem is discussed in [8], where the equation is

x + y = 2z, describing a 3-term arithmetic progression.

In this chapter, we give a novel proof, using completely new ideas, of the original

problem. We also find a new algorithm to find a good upper bound for the original

problem with r-colorings rather than just 2-colorings, as well as for Graham’s general-

ized problem. It is a “greedy” type algorithm, using calculus. We conjecture that these

upper bounds are the actual minimum values. Finally, we managed to find two new

lower bounds when a = 2, 3 for the generalize problem.
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I am also interested in analogous problems for graphs. One such problem can be

stated as follows. Find the asymptotic minimum number of monochromatic Kk of any

r-edge-coloring of Kn, where k ≥ 3 and r ≥ 2 are fixed. The answer is known only for

(k, r) = (3, 2). The minimum turns out to be the same as the average which turns out

to be n3

24 + O(n2). I hope to work on this problem in the near future.

1.4 Symbolic Moment Calculus and its application

In this chapter, I calculated higher moments of random variables associated with two

different combinatorial objects. From my experience working on these problems, going

from one moment to another requires a lot more computations. Most of the time, com-

puting the third moment is very hard. Many mathematicians do not like this type of

problem because of their difficulty and the long, tedious answer they get. The original

work can be found in [5]. Zeilberger pioneered symbolic computational methods for

computing higher moments for interesting random variables. His work about comput-

ing higher moments can be found in [12] and [13].

The first such random variable we considered is the number of monochromatic Schur

Triples defined in the sample space of all r coloring of [1, n]. We managed to compute

the first and second moments, exactly. Another random variable considered is the

number of monochromatic Kk in r-edge-colorings of the complete graph Kn. We found

formulas for moments in terms of certain multi-sums. However to write out the explicit

formula from these sums is still hard. We wrote a program to compute explicit formulas

up to the fifth moment. The input is the numeric k, and the output is the formula for

each moment in terms of n (the number of vertices) and r (the number of colors).

In a ground-breaking work, Paul Erdös used the first moment, (alias expectation),

to show that lim infk→∞R(k, k)
1
k ≥ √

2. We use an idea of Zeilberger in [13], that

uses the generalized Principle of Inclusion-Exclusion (PIE) with higher moments in the
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hope of improving the lower bound of lim infk→∞R(k, k)
1
k . The second part of chapter

8 expands the details of Zeilberger’s idea. We realize that this is a “long-shot”, and

still very exploratory, but we believe that the problem is so interesting that is worth

exploring.

The problem about improving the lower bound of lim infk→∞R(k, k)
1
k is a very fa-

mous problem. The lower bound has not been improved since Erdos first introduced

the idea of the probabilistic method more than 60 years ago.

I like to compare this problem with the Four Color Theorem in graph theory. For

a long time people tried to find a short, elegant proof, without success. At the end,

many people realized that they have to get their hands dirty by working on details

which require lots of case analysis. I have the feeling that this problem might end up

the same way. Extensive computations are required in order to gain more information

that we need to improve the lower bound on lim infk→∞R(k, k)
1
k .
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Chapter 2

Toads and Frogs (Symbolic Finite-State Approach)

2.1 Introduction

The game Toads and Frogs, invented by Richard Guy, is extensively discussed in “Win-

ning Ways” [1], the famous classic by Elwyn Berlekamp, John Conway, and Richard

Guy, that is the bible of combinatorial game theory.

This game got so much coverage because of the simplicity and elegance of its rules,

the beauty of its analysis, and as an example of a combinatorial game whose positions

do not always have values that are numbers.

The game is played on a 1 × n strip with either Toad(T) , Frog(F) or ¤ on the

squares. Left plays T and Right plays F. T may move to the immediate square on its

right, if it happens to be empty, and F moves to the next empty square on the left, if

it is empty. If T and F are next to each other, they have an option to jump over one

another, in their designated directions, provided they lend on an empty square. (See

[1], page 14).

In symbols: the following moves are legal for Toad:

. . .T¤ . . . → . . . ¤T . . . ,

. . .TF¤ . . . → . . . ¤FT . . . ,

and the following moves are legal for Frog:
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. . .¤F . . . → . . .F¤ . . . ,

. . .¤TF . . . → . . . FT¤ . . . .

Already in “Winning Ways” [1], there is some analysis of Toads and Frogs positions,

but on specific, small boards, such as TTT¤FF. In 1996, Jeff Erickson [4] analyzed

more general positions. At the end he made five conjectures about the values of some

families of positions. All of them are “starting” positions (i.e. positions where all T’s

are rightmost and all F’s are leftmost).

To be able to understand this chapter, readers need some knowledge of combina-

torial game theory, that can be found in [1]. In particular, readers should be familiar

with the notion of value of a game. Recall that values are not always numbers (not

even surreal ones).

Let’s recall the bypass reversible move rule, the dominated options rule (see [1] page

62-64) and Erickson’s Terminal Toads Theorem (see [4]).

Bypassing right’s reversible move rule

DL

G

A B C D E F

U V W X Y Z

H

A B C E F

X Y Z

Figure 2.1: The Bypassing reversible move rule.
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G = H if DL ≥ G.

The Dominated options Rule

Let G = {A,B, C, ... | D, E, F, ..}.
If A ≥ B and D ≥ E then G = {A,C, ... | E, F, ..}.

The Terminal Toads Theorem: Let X be any position. Then

XT¤n = X¤n + n.

The only notation we use is ∗ (= {0 | 0}). We will not use any shorthand notation

like ↑, ⇑, etc.

Next, we will explain the method through examples, and describe how to implement

the method when applied to certain classes of positions. Finally, we discuss a new con-

jecture and possible future work.

Everything is fully implemented in a Maple package, ToadsAndFrogs, written by

the author, available from website.

2.2 A Symbolic Finite-State Method

We define two classes of positions:

Class A: All the positions that have a fixed number of occurrences of ¤ and F, but a

variable (symbolic) number of T’s in-between the ¤’s and F’s.

class B: All the positions that have a fixed number of occurrences of T’s and F’s, but

a variable (symbolic) number of ¤’s in-between the T’s and F’s.
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Aij := the class in which we have exactly i occurrences of ¤ and exactly j occurrences

of F.

Bij := the class in which we have exactly i occurrences of T and exactly j occurrences

of F.

For any specific position, we can always compute its value, by using the recursive

definition of the value. But this is mere number-crunching. After collecting enough

data, and examining it, if we are lucky, we (or rather our computers) can detect a uni-

form pattern, and conjecture an explicit formula for the values of the studied family,

in terms of the symbolic parameters. Once conjectured, these conjectured explicit ex-

pressions can be proved by induction on the symbolic parameters. The beauty and

novelty of our approach is that everything is done automatically. First the conjec-

turing parts, but more dramatically, the proving part. We teach the computer how to

conjecture, by looking for general patterns, and then how to use induction in order to

prove its own conjectures.

This activity of computer-generated mathematics is in sharp contrast to the tra-

ditional approach of [2], that merely uses the computer as a calculator, to generate

numerical data, and everything else, the conjecturing, and the proving (when feasible)

is done by humans.

We believe that the present methodology is of potential use in many other branches

of mathematics, and “Toads and Frogs” is but an instructive arena for presenting a

general approach for computer-generated research.

When we analyze each class of positions, we are naturally lead, by the recursive

definition of the value (of a game), to other classes of positions. Luckily, at least in all

the cases encountered so far, there are always a finite number of different classes, that

we can name “symbolic states”. If the (symbolic) value of each “state” in the class is
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conjectured to have a (symbolic) explicit expression, then we can prove the truth of

all these conjectures all at once by applying induction on the recurrence relations.

Note that in order for this to work we need to conjecture explicit expressions for all

the states, so we usually get much more than we bargained for.

We will demonstrate the method with the two simplest nontrivial classes: A11 and

B11.

First example: Type A11: one ¤ and one F

Let f(a, b) be the value of Ta¤TbF.

Let g(a) be the value of TaF¤.

Here, of course, Ta means T repeated a times, so the ‘game’ f(a, b), for example,

stands for a doubly-infinite set of starting positions.

Recurrences:

Note that if any parameter of the function is negative then it return NULL.

Ta−1¤TF TaF¤

Ta¤F

Figure 2.2: Recurrence for f(a, 0), a ≥ 0.

f(a, 0) = {f(a− 1, 1) | g(a)}, a ≥ 0.
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Ta−1¤T2F TaF¤ + 1

Ta¤TF

Figure 2.3: Recurrence for f(a, 1), a ≥ 0.

f(a, 1) = {f(a− 1, 2) | g(a) + 1}, a ≥ 0.

Ta−1¤Tb+1F

Ta¤TbF

Figure 2.4: Recurrence for f(a, b), a ≥ 0, b ≥ 2.

f(a, b) = {f(a− 1, b + 1) | }, a ≥ 0, b ≥ 2.

Ta−1¤F

TaF¤

Figure 2.5: Recurrence for g(a), a ≥ 0.

g(a) = {f(a− 1, 0) | }, a ≥ 0.

The above recurrences can be easily used to crank out numerical data for small (and

not so small) values of a and b. Then the computer automatically makes the following

symbolic conjectures.
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Conjectures:

f(0, 0) = −1.

f(a, 0) = {{a− 2 | 1} | 0} , a ≥ 1.

f(a, 1) = {a− 1 | 1} , a ≥ 0.

f(a, b) = a , a ≥ 0, b ≥ 2.

g(a) = 0 , a ≥ 0.

Once conjectured, the proof is routine, and also can (and was!) done by computer.

One checks the obvious initial conditions and verifies that the above expressions satisfy

the above defining relations. Indeed, the computer easily verifies that

f(a, 0) = {f(a− 1, 1) | g(a)} = {{a− 2 | 1} | 0} , a ≥ 1.

f(0, 1) = { | g(0) + 1} = { | 1} = 0 = {−1 | 1}.
f(a, 1) = {f(a− 1, 2) | g(a) + 1} = {a− 1 | 1} , a ≥ 1.

f(0, b) = { | } = 0 , b ≥ 2.

f(a, b) = {f(a− 1, b + 1) | } = {a− 1 | } = a , a ≥ 1, b ≥ 2.

g(0) = { | } = 0.

g(1) = {f(0, 0) | } = {−1 | } = 0.

g(a) = {f(a− 1, 0) | } = {{{a− 3 | 1} | 0} | }
= { | } (!! by bypass reversible move rule) = 0 , a ≥ 2.

Note that the above values for f(a, 0) (a ≥ 1) agree with the case b = 1 of Theorem

5.2 of [2].

Second Example: Type B11: one T and one F.

Let f(a, b, c) := ¤aT¤bF¤c.

Now we have a three- parameter family!
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Initial Conditions and Recurrences:

f(0, 0, 0) = { | }.
f(a, 0, 0) = { | (−a + 1) + 1} = { | −a + 2} , a ≥ 1.

f(0, 0, c) = {(c− 1)− 1 | } = {c− 2 | } , c ≥ 1.

f(a, 0, c) = {c− a− 2 | c− a + 2} , a ≥ 1, c ≥ 1.

¤aT¤b−1F¤c+1¤a+1T¤b−1F¤c

¤aT¤bF¤c

Figure 2.6: Recurrence of f(a, b, c), a ≥ 0, c ≥ 0, b ≥ 1.

f(a, b, c) = {f(a + 1, b− 1, c) | f(a, b− 1, c + 1)}, a ≥ 0, c ≥ 0, b ≥ 1.

By using these recurrences numerically, the computer cranks out enough data, that

enables it to make the following

Conjecture:

f(a, b, c) = {c− a− 2 | c− a + 2} , a ≥ 0, c ≥ 0, b is even.

f(a, b, c) = {{c− a− 3 | c− a + 1} | {c− a− 1 | c− a + 3}} , a ≥ 0, c ≥ 0, b is odd .

Proof: by induction: on b.

Base case: b = 0

We have

f(0, 0, 0) = 0 = {−2 | 2}.
f(a, 0, 0) = { | −a + 2} = {−a− 2 | −a + 2}, a ≥ 1.

f(0, 0, c) = {c− 2 | } = {c− 2 | c + 2}, c ≥ 1.

f(a, 0, c) = {c− a− 2 | c− a + 2}, a ≥ 1, c ≥ 1.
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Induction step on b

Case 1) b is even and b 6= 0:

f(a, b, c) = {f(a + 1, b− 1, c) | f(a, b− 1, c + 1)}, a ≥ 0, c ≥ 0.

= {{c− a− 4 | c− a} | {c− a− 2 | c− a + 2}}
| {{c− a− 2 | c− a + 2} | {c− a | c− a + 4}}}.

= {c− a− 2 | c− a + 2}.

Case 2) b is odd

f(a, b, c) = {f(a + 1, b− 1, c) | f(a, b− 1, c + 1)} , a ≥ 0, c ≥ 0.

= {{c− a− 3 | c− a + 1} | {c− a− 1 | c− a + 3}}.

The second example is related to the results of Erickson [4] as follows. The case

b = 0 is Lemma 4.1 of [4], while the case a = 0, c = 0 coincides with the case a = 1 of

Theorem 5.2. Note that we need the extra elbow-room of a three-parameter family to

enable the inductive argument.

2.3 How far can the symbolic finite state method go?

As we mentioned in the previous section, the finite state method works perfectly well

when the value of every position in the class has a discernible pattern. This seems to

be the case for class A. We wrote a computer program in Maple to first calculate, then

conjecture, and finally prove, the values of general positions in class A automatically.

The program now works for positions with any fixed number of ¤’s and with one Frog.

For the class where we have more than one Frog, it is harder to find conjectures, for

humans, and even for computers. We conjectured some classes with two Frogs(A12,

A22, A32) by hand and put it in the computer program to prove the conjectures.

The list of the results for the classes A11, A21, A31, A41, A51, A12, A22, A32 can

be found in the next chapter.
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As a very special case of our results for the class A32, we get a proof of Erickson’s

[4] conjecture 2, that claims that the value of Ta¤¤¤FF is {a− 2 | a− 2}, ( a ≥ 2).

In the next chapter, we discusses the value of any position with one ¤ and any num-

ber of Toads and Frogs (Therefore we are done with class A1n, n ≥ 1). This general

class with one ¤ is the only general class we are able to figure out the patterns for.

We now turn our attention to class B. We solved class B11 in the previous section. For

B21: TTF, we already have a difficulty. The formulas in this class are long and hard

to find in a canonical form. We will discuss this in the next section.

2.4 A Conjecture and Future Work

Conjecture:

1) We always have “nice compact” formulas for every position in class A.

Future Work:

1) Implement the symbolic finite state method for the class B21.

2) We have seen systems of recurrence relations arising naturally in each class.

We solved the recurrences by “guessing” (automatically, of course) the answers (using

predefined ansatzes) and then proving them by induction. It would be interesting to

develop general algorithms for systematically solving the recurrences, without the need

for “guessing”.

2.5 On the difficulty of class B21: TTF

B21: TTF

f(a, b, c, d) := ¤aT¤bT¤cF¤d.
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g(a, b, c) := ¤aT¤bF¤c.

We already knew the solution of g since it is exactly B11.

We can now focus on f.

Recurrences:

f(a, 0, 0, 0) = { | } = 0.

f(a, 0, 0, d) = {g(a, 1, d− 1) + d− 1 | }
= {{{d− a− 4 | d− a} | {d− a− 2 | d− a + 2}} | }

, a ≥ 0, d ≥ 1.

f(a, b, 0, 0) = {f(a + 1, b− 1, 0, 0) | g(a, b− 1, 1) + 1}
, a ≥ 0, b ≥ 1.

f(a, b, 0, d) = {f(a + 1, b− 1, 0, d), g(a, b + 1, d− 1) + d− 1 | g(a, b− 1, d + 1) + d + 1}
, a ≥ 0, b ≥ 1, d ≥ 1.

f(a, b, c, d) = {f(a + 1, b− 1, c, d), f(a, b + 1, c− 1, d) | f(a, b, c− 1, d + 1)}
, a ≥ 0, b ≥ 0, c ≥ 1, d ≥ 0.

Note: f(a, 0, 0, d) has been discussed before as lemma 4.3 by Erickson.

A nice formula for f(a, b, 0, 0).

For b =1:
f(a, 1, 0, 0) = {f(a + 1, 0, 0, 0) | g(a, 0, 1) + 1}

= {0 | {−1− a | 3− a}+ 1}

=





1
2 , a = 0,1

{0 | 3− a} , a ≥ 2

For b ≥ 2 and b is even:

f(a, b, 0, 0) =





1 , a = 0

−a + 2 , a ≥ 1.

= { | a} − a + 2.
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For b ≥ 2 and b is odd.

f(a, b, 0, 0) =





{1 | 1} , a = 0

1
2 , a = 1

−a + 2 , a ≥ 2.

However for f(a, b, 0, d), a ≥ 0, b ≥ 1, d ≥ 1 , the formulas get longer and longer and

we started to lose track of them, and consequently failed to find formulas in this case.

It should be possible to write Maple code specifically to find a pattern for the values

of positions in class B. The authors expect the formulas in other classes of type B (for

example B22: TTFF) to be even more complicated than B21, since it has to build up

from B21.

It appears that the positions in class B have periodicity and they need more care to

formulate the right conjectures.

2.6 About the program

Our Symbolic Finite-State Method was implemented in Maple. We first wrote a pro-

gram to recursively calculate the values of games. Then we improved the program by

making use of the symbolic computation capability of Maple, to formulate conjectures,

and prove the values of game-positions. The whole proof process was completely auto-

mated. Below is the short description of the program. See the web site for complete

details of the program.

ToFr

Input: the specific position of the game.

Output: the value of the game in canonical form.
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SVG

Input: the value of the game, could be symbolic.

Output: the value of the game in canonical form.

Note: This program can also be used for other combinatorial games.

MainConj

Input: number of ¤ and number of F.

Output: The list of conjectures.

Prove

Input: number of ¤ and number of F.

Output: the values of all of the positions in this class.

The program currently only works for one Frog with any fixed number of ¤. With

more than one Frog, it gets harder to find conjectures. But one could find conjectures

by hand and feed them to the subfunctions in Prove. The program can help verify such

humanly-made conjectures.

Obviously, there is still a lot of work to be done, but let’s remember that

“ Every great artwork always starts from a rough draft”.
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Chapter 3

Library values of Toads and Frogs

3.1 Introduction

We present here the values of Toads and Frogs as an implementation of the finite state

method introduced in the previous chapter.

All the values in that chapter have already been proved. For the class with one Frog,

Ai1, i = 1, 2, 3, 4, 5, we have an automated program to conjecture and prove every-

thing automatically. For the class with two frogs, Ai2, i = 1, 2, 3, we also have to

use human ingenuity to formulate conjectures , but use the computer program that we

wrote to prove these conjectures. For the class with one blank, A1i we outlined the

fast algorithm to compute the values of positions. We then compute the explicit values

of A1i, i = 1, 2, 3. For the class B11, we already proved the values by hand, as an

example, in the previous chapter. We also mention it here.

3.2 Results for classes with one frog.

ClassA11: ¤F

Let f(a, b) be the value of Ta¤TbF

Let g(a) be the value of TaF¤

Values:
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f(0, 0) = −1.

f(a, 0) = {{a− 2 | 1} | 0} , a ≥ 1.

f(a, 1) = {a− 1 | 1} , a ≥ 0.

f(a, b) = a , a ≥ 0, b ≥ 2.

g(a) = 0 , a ≥ 0.

ClassA21: ¤¤F

Let f(a, b, c) be the value of Ta¤Tb¤TcF

Let g(a, b) be the value of Ta¤TbF¤

Let h(a) be the value of TaF¤¤

Values:

f(0, 0, 0) = −2.

f(a, 0, 0) = a− 1 , a ≥ 1.

f(0, 1, 0) = −1
2 .

f(a, 1, 0) = a∗ , a ≥ 1.

f(a, b, 0) = {{2a + b− 2 | a + 1} | a} , a ≥ 0, b ≥ 2.

f(0, 0, 1) = −1.

f(a, 0, 1) = a , a ≥ 1.

f(a, b, 1) = {2a + b− 1 | a + 1} , a ≥ 0, b ≥ 1.

f(a, b, c) = 2a + b , a ≥ 0, b ≥ 0, c ≥ 2.

g(0, 0) = −1.

g(a, 0) = a− 1
2 , a ≥ 1.

g(a, b) = a , a ≥ 0, b ≥ 1.

h(a) = a , a ≥ 0.
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ClassA31: ¤¤¤F

Let f(a, b, c, d) be the value of Ta¤Tb¤Tc¤TdF.

Let g(a, b, c) be the value of Ta¤Tb¤TcF¤.

Let h(a, b) be the value of Ta¤TbF¤¤.

Let i(a) be the value of TaF¤¤¤.

Values:

f(0, 0, 0, 0) = −3.

f(a, 0, 0, 0) = (2a− 2)∗ , a ≥ 1.

f(a, b, 0, 0) = 2a + b− 1 , a ≥ 0, b ≥ 1.

f(a, 0, 1, 0) = 2a− 1 , a ≥ 0.

f(a, b, 1, 0) = (2a + b)∗ , a ≥ 0, b ≥ 1.

f(a, b, c, 0) = {{3a + 2b + c− 2 | 2a + b + 1} | 2a + b} , a ≥ 0, b ≥ 0, c ≥ 2.

f(0, 0, 0, 1) = −2.

f(a, 0, 0, 1) = (2a− 1)∗ , a ≥ 1.

f(a, b, 0, 1) = 2a + b , a ≥ 0, b ≥ 1.

f(a, b, c, 1) = {3a + 2b + c− 1 | 2a + b + 1} , a ≥ 0, b ≥ 0, c ≥ 1.

f(a, b, c, d) = 3a + 2b + c , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

g(a, 0, 0) = 2a− 2 , a ≥ 0.

g(a, b, 0) = (2a + b− 1) ∗ .

g(a, b, c) = 2a + b , a ≥ 0, b ≥ 0, c ≥ 1.

h(a, b) = 2a + b− 1 , a ≥ 0, b ≥ 0.

i(a) = 2a , a ≥ 0.
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ClassA41: ¤¤¤¤F

Let f(a, b, c, d, e) be the value of Ta¤Tb¤Tc¤Td¤TeF.

Let g(a, b, c, d) be the value of Ta¤Tb¤Tc¤TdF¤.

Let h(a, b, c) be the value of Ta¤Tb¤TcF¤¤.

Let i(a, b) be the value of Ta¤TbF¤¤¤.

Let j(a) be the value of TaF¤¤¤¤.

Values:

f(0, 0, 0, 0, 0) = −4.

f(a, 0, 0, 0, 0) = 3a− 3 , a ≥ 1.

f(0, 1, 0, 0, 0) = −1
2 .

f(a, 1, 0, 0, 0) = 3a− 1
4 , a ≥ 1.

f(a, b, 0, 0, 0) = (3a + 2b− 2)∗ , a ≥ 0, b ≥ 2.

f(0, 0, 1, 0, 0) = −1.

f(a, 0, 1, 0, 0) = 3a− 1
2 , a ≥ 1.

f(a, b, c, 0, 0) = 3a + 2b + c− 1 , a ≥ 0, b ≥ 1, c = 1 or a ≥ 0, b ≥ 0, c ≥ 2.

f(0, 0, 0, 1, 0) = −2.

f(a, b, 0, 1, 0) = 3a + 2b− 1 , a ≥ 1, b = 0 or a ≥ 0, b ≥ 1.

f(0, 0, 1, 1, 0) = 1
2 .

f(a, 0, 1, 1, 0) = 3a + 3
4 , a ≥ 1.

f(a, b, c, 1, 0) = (3a + 2b + c)∗ , a ≥ 0, b ≥ 1, c = 1 or a ≥ 0, b ≥ 0, c ≥ 2.

f(0, 0, 0, 2, 0) = {∗ | 0}.
f(a, 0, 0, 2, 0) = {{4a | 3a + 1

2} | 3a} , a ≥ 1.

f(a, b, c, d, 0) = {{4a + 3b + 2c + d− 2 | 3a + 2b + c + 1} | 3a + 2b + c}
,a ≥ 0, b ≥ 1, c = 0, d = 2

or a ≥ 0, b ≥ 0, c ≥ 1, d = 2

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 3.
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f(0, 0, 0, 0, 1) = −3.

f(a, 0, 0, 0, 1) = 3a− 2 , a ≥ 1.

f(0, 1, 0, 0, 1) = 1
2 .

f(a, 1, 0, 0, 1) = 3a + 3
4 , a ≥ 1.

f(a, b, 0, 0, 1) = (3a + 2b− 1)∗ , a ≥ 0, b ≥ 2.

f(0, 0, 1, 0, 1) = 0.

f(a, 0, 1, 0, 1) = 3a + 1
2 , a ≥ 1.

f(a, b, c, 0, 1) = 3a + 2b + c , a ≥ 0, b ≥ 1, c = 1 or a ≥ 0, b ≥ 0, c ≥ 2.

f(0, 0, 0, 1, 1) = ∗.
f(a, 0, 0, 1, 1) = {4a | 3a + 1

2} , a ≥ 1.

f(a, b, c, d, 1) = {4a + 3b + 2c + d− 1 | 3a + 2b + c + 1}
, a ≥ 0, b ≥ 1, c = 0, d = 1 or

a ≥ 0, b ≥ 0, c ≥ 1, d = 1 or

a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

f(a, b, c, d, e) = 4a + 3b + 2c + d , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, e ≥ 2.

g(0, 0, 0, 0) = −3.

g(a, 0, 0, 0) = 3a− 5
2 , a ≥ 1.

g(a, b, 0, 0) = 3a + 2b− 2 , a ≥ 0, b ≥ 1.

g(0, 0, 1, 0) = −1
2 .

g(a, 0, 1, 0) = 3a− 1
4 , a ≥ 1.

g(a, b, c, 0) = (3a + 2b + c− 1)∗ , a ≥ 0, b ≥ 1, c = 1

or a ≥ 0, b ≥ 0, c ≥ 2.

g(0, 0, 0, 1) = −1.

g(a, 0, 0, 1) = 3a− 1
2 , a ≥ 1.
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g(a, b, c, d) = 3a + 2b + c , a ≥ 0, b ≥ 1, c = 0, d = 1

or a ≥ 0, b ≥ 0, c ≥ 1, d = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

h(a, 0, 0) = 3a− 2 , a ≥ 0.

h(a, b, 0) = 3a + 2b− 3
2 , a ≥ 0, b ≥ 1.

h(a, b, c) = 3a + 2b + c− 1 , a ≥ 0, b ≥ 0, c ≥ 1.

i(a, b) = 3a + 2b− 1 , a ≥ 0, b ≥ 0.

j(a) = 3a , a ≥ 0.

ClassA51: ¤¤¤¤¤F

Let f(a, b, c, d, e, l) be the value of Ta¤Tb¤Tc¤Td¤Te¤TlF.

Let g(a, b, c, d, e) be the value of Ta¤Tb¤Tc¤Td¤TeF¤.

Let h(a, b, c, d) be the value of Ta¤Tb¤Tc¤TdF¤¤.

Let i(a, b, c) be the value of Ta¤Tb¤TcF¤¤¤.

Let j(a, b) be the value of Ta¤TbF¤¤¤¤.

Let k(a) be the value of TaF¤¤¤¤¤.

Values:

f(0, 0, 0, 0, 0, 0) = −5.

f(a, 0, 0, 0, 0, 0) = (4a− 4)∗ , a ≥ 1.

f(a, b, 0, 0, 0, 0) = 4a + 3b− 3 , a ≥ 0, b ≥ 1.

f(a, b, 1, 0, 0, 0) = 4a + 3b− 1 , a ≥ 0, b ≥ 0.

f(a, b, c, 0, 0, 0) = (4a + 3b + 2c− 2)∗ , a ≥ 0, b ≥ 0, c ≥ 2.

f(a, 0, 0, 1, 0, 0) = 4a− 2 , a ≥ 0.

f(a, b, 0, 1, 0, 0) = (4a + 3b− 1)∗ , a ≥ 0, b ≥ 1.
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f(a, b, c, d, 0, 0) = 4a + 3b + 2c + d− 1 , a ≥ 0, b ≥ 0, c ≥ 1, d = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

f(0, 0, 0, 0, 1, 0) = −3.

f(a, 0, 0, 0, 1, 0) = (4a− 2)∗ , a ≥ 1.

f(a, b, c, 0, 1, 0) = 4a + 3b + 2c− 1 , a ≥ 0, b ≥ 1, c = 0

or a ≥ 0, b ≥ 0, c ≥ 1, .

f(a, b, 0, 1, 1, 0) = 4a + 3b , a ≥ 0, b ≥ 0.

f(a, b, c, d, 1, 0) = (4a + 3b + 2c + d)∗ , a ≥ 0, b ≥ 0, c ≥ 1, d = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

f(a, 0, 0, 0, 2, 0) = 4a− 1 , a ≥ 0.

f(a, b, 0, 0, 2, 0) = (4a + 3b)∗ , a ≥ 0, b ≥ 1.

f(a, b, c, d, e, 0) = {{5a+4b+3c+2d+e−2 | 4a+3b+2c+d+1} | 4a+3b+2c+d}
, a ≥ 0, b ≥ 0, c ≥ 1, d = 0, e = 2

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 1, e = 2

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, e ≥ 3.

f(a, b, c, d, 0, 1) = f(a, b, c, d, 0, 0) + 1 , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0.

f(a, 0, 0, 0, 1, 1) = {5a | 4a− 1} , a ≥ 0.

f(a, b, 0, 0, 1, 1) = {5a + 4b | (4a + 3b)∗} , a ≥ 0, b ≥ 1.

f(a, b, c, d, e, 1) = {5a + 4b + 3c + 2d + e− 1 | 4a + 3b + 2c + d + 1} ,

a ≥ 0, b ≥ 0, c ≥ 1, d = 0, e = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 1, e = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, e ≥ 2 .

f(a, b, c, d, e, l) = 5a + 4b + 3c + 2d + e, a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, e ≥ 0, l ≥ 2.
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g(a, 0, 0, 0, 0) = 4a− 4 , a ≥ 0.

g(a, b, 0, 0, 0) = (4a + 3b− 3)∗ , a ≥ 0, b ≥ 1.

g(a, b, c, 0, 0) = 4a + 3b + 2c− 2 , a ≥ 0, b ≥ 0, c ≥ 1.

g(a, b, 0, 1, 0) = 4a + 3b− 1 , a ≥ 0, b ≥ 0.

g(a, b, c, d, 0) = (4a + 3b + 2c + d− 1)∗ , a ≥ 0, b ≥ 0, c ≥ 1, d = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

g(a, 0, 0, 0, 1) = 4a− 2 , a ≥ 0.

g(a, b, 0, 0, 1) = (4a + 3b− 1)∗ , a ≥ 0, b ≥ 1.

g(a, b, c, d, e) = 4a + 3b + 2c + d , a ≥ 0, b ≥ 0, c ≥ 1, d = 0, e = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 1, e = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, e ≥ 2.

h(a, b, 0, 0) = 4a + 3b− 3 , a ≥ 0, b ≥ 0.

h(a, b, c, 0) = (4a + 3b + 2c− 2)∗ , a ≥ 0, b ≥ 0, c ≥ 1.

h(a, b, c, d) = 4a + 3b + 2c + d− 1 , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 1.

i(a, b, c) = 4a + 3b + 2c− 2 , a ≥ 0, b ≥ 0, c ≥ 0.

j(a, b) = 4a + 3b− 1 , a ≥ 0, b ≥ 0.

k(a) = 4a , a ≥ 0.

3.3 Result of class with two frogs.

ClassA12: ¤FF

Let f(a, b, c) be the value of Ta¤TbFTcF

Let g(a, b, c) be the value of TaFTb¤TcF
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Let h(a, b) be the value of TaFTbF¤

Values:

f(0, 0, 0) = −2.

f(0, 0, c) = −1 , c ≥ 1.

f(1, 0, 0) = {0 | −1
2}.

f(a, 0, c) = {{a− 2 | {0 | c}} | 0} , a = 1, c ≥ 1 or a ≥ 2, c ≥ 0.

f(a, 1, c) = {a− 1 | {0 | c}} , a ≥ 0, c ≥ 0.

f(a, b, c) = a , a ≥ 0, b ≥ 2, c ≥ 0.

g(0, 0, 0) = −1.

g(1, 0, 0) = −1
2 .

g(a, 0, 0) = {{{a− 3 | 1
2} | 0} | 0} , a ≥ 2.

g(a, b, 0) = {{b− 2 | 1} | 0} , a ≥ 0, b ≥ 1.

g(a, b, 1) = {b− 1 | 1} , a ≥ 0, b ≥ 0.

g(a, b, c) = b , a ≥ 0, b ≥ 0, c ≥ 2.

h(a, b) = 0 , a ≥ 0, b ≥ 0.

ClassA22: ¤¤FF

Let f(a, b, c, d) be the value of Ta¤Tb¤TcFTdF.

Let g(a, b, c, d) be the value of Ta¤TbFTc¤TdF.

Let h(a, b, c, d) be the value of TaFTb¤Tc¤TdF.

Let i(a, b, c) be the value of Ta¤TbFTcF¤.

Let j(a, b, c) be the value of TaFTb¤TcF¤.

Let k(a, b) be the value of TaFTbF¤¤.

Note: In f, g, h, we omit the case where d ≥ 2 since it will reduce to ClassA21.
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Values:
For d=0

f(0, 0, 0, 0) = −4.

f(1, 0, 0, 0) = −1.

f(2, 0, 0, 0) = ∗.
f(a, 0, 0, 0) = {a− 5

2 | 0} , a ≥ 3.

f(0, 1, 0, 0) = −3
2 .

f(1, 1, 0, 0) = 0.

f(2, 1, 0, 0) = {1 | {1
2 | 0}}.

f(a, 1, 0, 0) = a− 3
2 , a ≥ 3.

f(0, 2, 0, 0) = {{0 | ∗} | −1
4 }.

f(1, 2, 0, 0) = 1
2 ∗ .

f(a, 2, 0, 0) = a− 1 , a ≥ 2.

f(a, b, 0, 0) = a∗ , a ≥ 0, b ≥ 3.

f(0, 0, 1, 0) = −2.

f(1, 0, 1, 0) = ∗.
f(2, 0, 1, 0) = 1.

f(3, 0, 1, 0) = 1.

f(a, 0, 1, 0) = {(a− 2)∗ | 1∗} , a ≥ 4.

f(0, 1, 1, 0) = {0 | ∗}.
f(1, 1, 1, 0) = {2 | (1

2)∗}.
f(a, 1, 1, 0) = {2a | {(a− 1)∗ | 1∗}} , a ≥ 2.

f(a, b, 1, 0) = {2a + b− 1 | a∗} , a ≥ 0, b ≥ 2.

For d=1

f(0, 0, 0, 1) = −3.

f(a, 0, 0, 1) = {a− 2 | 1} , a ≥ 1.
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f(0, 1, 0, 1) = −1
2 .

f(a, 1, 0, 1) = {a− 1
2 | {a− 1 | 1}} , a ≥ 1.

f(a, 2, 0, 1) = {{2a | {a | {a | 2}}} | a} , a ≥ 0.

f(a, b, 0, 1) = {{2a + b− 2 | a + 1
2} | a} , a ≥ 0, b ≥ 3.

f(0, 0, 1, 1) = −1.

f(a, 0, 1, 1) = a− 1
2 , a ≥ 1

f(a, 1, 1, 1) = {2a | {a | {a | 2}}} , a ≥ 0.

f(a, b, 1, 1) = {2a + b− 1 | a + 1
2} , a ≥ 0, b ≥ 2.

f(a, b, c, d) = 2a + b , a ≥ 0, b ≥ 0, c ≥ 2, d ≥ 0.

For d=0

First a = 0, b = 0.

g(0, 0, 0, 0) = −3.

g(0, 0, 1, 0) = −3
2 .

g(0, 0, c, 0) = {{c− 3 | 0} | −1} , c ≥ 2

g(0, 0, 0, 1) = −2.

g(0, 0, c, 1) = {c− 2 | 0} , c ≥ 1

g(0, 0, c, d) = c− 1 , c ≥ 0, d ≥ 2.

Second c = 0, d = 0.

g(1, 0, 0, 0) = (−1) ∗ .

g(a, 0, 0, 0) = 0 , a ≥ 2.

g(0, 1, 0, 0) = −1.

g(1, 1, 0, 0) = ∗.
g(a, 1, 0, 0) = {a− 3

2 | 0} , a ≥ 2.
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g(0, 2, 0, 0) = −1
4 .

g(a, 2, 0, 0) = a− 1
2 , a ≥ 1.

g(a, 3, 0, 0) = {{{2a | {a | {a | 2}}} | a} | a} , a ≥ 0.

g(a, b, 0, 0) = {{{2a + b− 3 | a + 1
2} | a} | a} , a ≥ 0, b ≥ 4.

Third b = 0, d = 0.

g(1, 0, 1, 0) = 0.

g(2, 0, 1, 0) = {1 | {1
2 | 0}}.

g(a, 0, 1, 0) = 1∗ , a ≥ 3.

g(a, 0, c, 0) = {{a + c− 5
2 | {{a− 1 | 2} | 1}} | {{a− 2 | 1} | 0}} , a ≥ 1, c ≥ 2.

Fourth b = 1, d = 0.

g(0, 1, 1, 0) = ∗.
g(1, 1, 1, 0) = 1

2 ∗ .

g(a, 1, 1, 0) = {(a− 1)∗ | 1∗} , a ≥ 2.

g(a, 1, c, 0) = {{a + c− 2 | {a | 2}} | {a− 1 | 1}, 2} , (a, c) = (0, 1) or a ≥ 0, c ≥ 2.

Last b ≥ 2, d = 0.

g(a, b, c, 0) = {{a + c− 2 | a + 1} | a} , a ≥ 0, b ≥ 2, c ≥ 1.

Now for d=1

First b = 0, d = 1.

g(1, 0, 0, 1) = ∗.
g(a, 0, 0, 1) = 1 , a ≥ 2.

g(a, 0, c, 1) = {{a + c− 3
2 | {a− 1 | 2} | 1}} , a ≥ 1, c ≥ 1.
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Second b = 1, d = 1.

g(a, 1, 0, 1) = {a− 1 | 1} , a ≥ 0.

g(a, 1, c, 1) = {a + c− 1 | {a | 2}} , a ≥ 0, c ≥ 1.

Last b ≥ 2, d = 1.

g(a, b, c, 1) = {a + c− 1 | a + 1} , a ≥ 0, b ≥ 2, c ≥ 0.

h(0, 0, 0, 0) = −2.

h(1, 0, 0, 0) = −1.

h(2, 0, 0, 0) = ∗.
h(3, 0, 0, 0) = {1

2 | 0}.
h(a, 0, 0, 0) = {1∗ | 0} , a ≥ 4.

h(a, b, 0, 0) = b− 1 , a ≥ 0, b ≥ 1.

h(0, 0, 1, 0) = −1
2 .

h(1, 0, 1, 0) = ∗.
h(a, 0, 1, 0) = {{{a− 2 | 2} | 1} | 0} , a ≥ 2.

h(a, b, 1, 0) = b∗ , a ≥ 0, b ≥ 1.

h(a, b, c, 0) = {{a + 2b + c− 2 | b + 1} | b} , a ≥ 0, b ≥ 0, c ≥ 2.

h(0, 0, 0, 1) = −1.

h(1, 0, 0, 1) = 0.

h(a, 0, 0, 1) = {{a− 2 | 2} | 1} , a ≥ 2.

h(a, b, 0, 1) = b , a ≥ 0, b ≥ 1.

h(a, b, c, 1) = {a + 2b + c− 1 | b + 1} , a ≥ 0, b ≥ 0, c ≥ 1.
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i(0, 0, 0) = −2.

i(1, 0, 0) = {0 | −1
2 }.

i(a, 0, 0) = {{a− 2 | 1
2} | {{{a− 3 | 1} | 0} | 0}} , a ≥ 2.

i(0, 0, c) = −1 , c ≥ 1.

i(a, 0, c) = {{a− 2 | 1} | 0} , a ≥ 1, c ≥ 1.

i(a, 1, 0) = {a− 1 | 1
2} , a ≥ 0.

i(a, 1, c) = {a− 1 | 1} , a ≥ 0, c ≥ 1.

i(a, b, c) = a , a ≥ 0, b ≥ 2, c ≥ 0.

j(0, 0, 0) = −1.

j(1, 0, 0) = −1
2 .

j(a, 0, 0) = {{{a− 3 | 1} | 0} | 0} , a ≥ 2.

j(a, b, 0) = b− 1
2 , a ≥ 0, b ≥ 1.

j(a, b, c) = b , a ≥ 0, b ≥ 0, c ≥ 1.

k(a, b) = b , a ≥ 0, b ≥ 0.

ClassA32: ¤¤¤FF

Let f(a, b, c, d, e) be the value of Ta¤Tb¤Tc¤TdFTeF.

Let g(a, b, c, d, e) be the value of Ta¤Tb¤TcFTd¤TeF.

Let h(a, b, c, d, e) be the value of Ta¤TbFTc¤Td¤TeF.

Let i(a, b, c, d, e) be the value of TaFTb¤Tc¤Td¤TeF.

Let j(a, b, c, d) be the value of Ta¤Tb¤TcFTdF¤.

Let k(a, b, c, d) be the value of Ta¤TbFTc¤TdF¤.

Let l(a, b, c, d) be the value of TaFTb¤Tc¤TdF¤.

Let m(a, b, c) be the value of Ta¤TbFTcF¤¤.

Let n(a, b, c) be the value of TaFTb¤TcF¤¤.

Let o(a, b) be the value of TaFTbF¤¤¤.
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Note: In f, g, h, i we omit the case when e ≥ 2 since they will reduce to ClassA31.

Values:

First for e = 0

f(0, 0, 0, 0, 0) = −6.

f(1, 0, 0, 0, 0) = (−2) ∗ .

f(a, 0, 0, 0, 0) = (a− 2)∗ , a ≥ 2.

f(0, 1, 0, 0, 0) = −2.

f(a, 1, 0, 0, 0) = a− 1 , a ≥ 1.

f(a, 2, 0, 0, 0) = {2a− 1 | a} , a ≥ 0.

f(a, b, 0, 0, 0) = {2a + b− 5
2 | a} , a ≥ 0, b ≥ 3.

f(0, 0, 1, 0, 0) = −3.

f(a, 0, 1, 0, 0) = {2a− 3 | a− 1} , a ≥ 1.

f(a, 1, 1, 0, 0) = 2a− 1 , a ≥ 0.

f(a, b, 1, 0, 0) = 2a + b− 3
2 , a ≥ 0, b ≥ 2.

f(0, 0, 2, 0, 0) = (−1) ∗ .

f(1, 0, 2, 0, 0) = 1 ∗ .

f(a, 0, 2, 0, 0) = 2a− 3
2 , a ≥ 2.

f(0, 1, 2, 0, 0) = 1
2 ∗ .

f(a, 1, 2, 0, 0) = 2a , a ≥ 1.

f(a, b, 2, 0, 0) = 2a + b− 1 , a ≥ 0, b ≥ 2.

f(a, b, c, 0, 0) = (2a + b)∗ , a ≥ 0, b ≥ 0, c ≥ 3.

f(0, 0, 0, 1, 0) = −4.

f(1, 0, 0, 1, 0) = −1.

f(a, 0, 0, 1, 0) = a− 1 , a ≥ 2.

f(0, 1, 0, 1, 0) = (−1) ∗ .

f(1, 1, 0, 1, 0) = 1 ∗ .
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f(a, 1, 0, 1, 0) = {{(2a− 2)∗ | a + 1
2} | a} , a ≥ 2.

f(0, 2, 0, 1, 0) = 1
2 ∗ .

f(a, b, 0, 1, 0) = {(2a + b− 2)∗ | (a + 1)∗} , a ≥ 1, b = 2 or a ≥ 0, b ≥ 3.

f(0, 0, 1, 1, 0) = {0 | (−1)∗}.
f(1, 0, 1, 1, 0) = {3 | 1∗}.
f(a, 0, 1, 1, 0) = {3a | {{(2a− 2)∗ | a + 1

2} | a}} , a ≥ 2.

f(0, 1, 1, 1, 0) = {2 | 1
2}.

f(a, b, 1, 1, 0) = {3a + 2b | {(2a + b− 1)∗ | (a + 1)∗}} , a ≥ 1, b = 1 or a ≥ 0, b ≥ 2.

f(a, b, c, 1, 0) = {3a + 2b + c− 1 | (2a + b)∗} , a ≥ 0, b ≥ 0, c ≥ 2.

f(a, b, c, d, 0) = 3a + 2b + c , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

Second for e = 1

f(0, 0, 0, 0, 1) = −5.

f(1, 0, 0, 0, 1) = (−1) ∗ .

f(2, 0, 0, 0, 1) = 1 ∗ .

f(a, 0, 0, 0, 1) = {{(2a− 4)∗ | a− 1
2} | a− 1} , a ≥ 3.

f(0, 1, 0, 0, 1) = −1.

f(1, 1, 0, 0, 1) = 1.

f(a, 1, 0, 0, 1) = {(2a− 2)∗ | a + 1
2} , a ≥ 2.

f(a, b, 0, 0, 1) = {2a + b− 2 | a + 1} , a ≥ 0, b ≥ 2.

f(0, 0, 1, 0, 1) = −3
2 .

f(1, 0, 1, 0, 1) = 1
2 .

f(a, 0, 1, 0, 1) = (2a− 2)∗ , a ≥ 2.

f(a, 1, 1, 0, 1) = 2a , a ≥ 0.

f(a, b, 1, 0, 1) = {{2a + b− 1 | {2a + b− 1 | a + 2}} | {2a + b− 1 | a + 1}} , a ≥ 0, b ≥ 2.

f(a, 0, 2, 0, 1) = (2a)∗ , a ≥ 0.

f(a, b, 2, 0, 1) = {{3a + 2b | {2a + b | {2a + b | a + 2}}} | 2a + b} , a ≥ 0, b ≥ 1.

f(a, b, c, 0, 1) = {{3a + 2b + c− 2 | 2a + b + 1
2} | 2a + b} , a ≥ 0, b ≥ 0, c ≥ 3.
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f(a, 0, 0, 1, 1) = 2a− 2 , a ≥ 0.

f(a, 1, 0, 1, 1) = (2a)∗ , a ≥ 0.

f(a, b, 0, 1, 1) = {2a + b− 1 |
{(2a + b− 1)∗, {2a + b− 1 | {2a + b− 1 | a + 2}} |
{2a + b− 1 | a + 1}, {{2a + b− 1 | a + 2} | a + 1}}} , a ≥ 0, b ≥ 2.

f(0, 0, 1, 1, 1) = {0 | ∗}.
f(a, 0, 1, 1, 1) = {3a | {2a | a + 1}} , a ≥ 1.

f(a, b, 1, 1, 1) = {3a + 2b | {2a + b | {2a + b | a + 2}}} , a ≥ 0, b ≥ 1.

f(a, b, c, 1, 1) = {3a + 2b + c− 1 | 2a + b + 1
2} , a ≥ 0, b ≥ 0, c ≥ 2.

f(a, b, c, d, 1) = 3a + 2b + c , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

For e = 0, I) a = 0, b = 0, c = 0

g(0, 0, 0, 0, 0) = −5.

g(0, 0, 0, 1, 0) = −3.

g(0, 0, 0, d, 0) = {{d− 4 | −1} | −2} , d ≥ 2.

For e = 0, II) d = 0

g(1, 0, 0, 0, 0) = −2.

g(a, 0, 0, 0, 0) = a− 2 , a ≥ 2.

g(0, 1, 0, 0, 0) = (−2) ∗ .

g(a, 1, 0, 0, 0) = (a− 1)∗ , a ≥ 1.

g(0, 2, 0, 0, 0) = (−1
2) ∗ .

g(a, 2, 0, 0, 0) = a , a ≥ 1.

g(a, b, 0, 0, 0) = a , a ≥ 0, b ≥ 3.

g(0, 0, 1, 0, 0) = −2.
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g(a, 0, 1, 0, 0) = a− 1 , a ≥ 1.

g(a, 1, 1, 0, 0) = {2a− 1 | a} , a ≥ 0.

g(a, b, 1, 0, 0) = {2a + b− 3
2 | a} , a ≥ 0, b ≥ 2.

g(a, 0, 2, 0, 0) = 2a− 1 , a ≥ 0.

g(a, b, 2, 0, 0) = 2a + b− 1
2 , a ≥ 0, b ≥ 1.

g(a, 0, 3, 0, 0) = {(2a)∗ | 2a} , a ≥ 0.

g(a, b, 3, 0, 0) = {{{3a + 2b | {2a + b | {2a + b | a + 2}}} | 2a + b} | 2a + b} , a ≥ 0, b ≥ 1.

g(a, b, c, 0, 0) = {{{3a + 2b + c− 3 | 2a + b + 1
2} | 2a + b} | 2a + b} , a ≥ 0, b ≥ 0, c ≥ 4.

For e = 0, III) c = 0

g(1, 0, 0, 1, 0) = −1
2 .

g(a, 0, 0, 1, 0) = (a− 1)∗ , a ≥ 2.

g(a, 0, 0, d, 0) = {{2a + d− 4 | a} | a− 1} , a ≥ 1, d ≥ 2.

g(0, 1, 0, 1, 0) = −1.

g(0, 1, 0, d, 0) = {{(d− 2)∗ | 1
2} | −1

2} , d ≥ 2.

g(a, 1, 0, 1, 0) = a , a ≥ 1.

g(a, 1, 0, d, 0) = {{(2a + d− 2)∗ | (a + 1)∗} | a∗} , a ≥ 1, d ≥ 2.

g(0, 2, 0, 1, 0) = 1
2 .

g(a, 2, 0, 1, 0) = (a + 1)∗ , a ≥ 1.

g(a, b, 0, 1, 0) = (a + 1)∗ , a ≥ 0, b ≥ 3.

g(a, b, 0, 2, 0) = {{(2a + b− 1)∗, {2a + b− 1 | {2a + b− 1 | a + 2}} |
{{2a + b− 1 | a + 2} | a + 1}, {2a + b− 1 | a + 1}} |
{{2a + b− 2 | a + 1} | a}} , a ≥ 0, b ≥ 2.

g(a, b, 0, d, 0) = {{(2a + b + d− 3)∗ | {{2a + b− 1 | a + 2} | a + 1}} |
{{2a + b− 2 | a + 1} | a}} , a ≥ 0, b ≥ 2, d ≥ 3.
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For e = 0, IV) c = 1

g(0, 0, 1, 1, 0) = (−1) ∗ .

g(1, 0, 1, 1, 0) = 1 ∗ .

g(a, 0, 1, 1, 0) = {{(2a− 2)∗ | a + 1
2} | a} , a ≥ 2.

g(0, 1, 1, 1, 0) = 1
2 ∗ .

g(a, b, 1, 1, 0) = {(2a + b− 1)∗ | (a + 1)∗} , a ≥ 1, b = 1 or a ≥ 0, b ≥ 2.

g(0, 0, 1, d, 0) = {{d− 2 | 0} | −1} , d ≥ 2.

g(a, 0, 1, d, 0) = {{2a + d− 2 | a + 1} | a} , a ≥ 1, d ≥ 2.

g(a, b, 1, d, 0) = {{2a + b + d− 2 | {2a + b | a + 2}} |
{2a + b− 1 | a + 1}, a + 2} , a ≥ 0, b ≥ 1, d ≥ 2.

For e = 0, V) c ≥ 1

g(a, b, c, 1, 0) = (2a + b)∗ , a ≥ 0, b ≥ 0, c ≥ 2.

g(a, b, c, d, 0) = {{2a + b + d− 2 | 2a + b + 1} | 2a + b} , a ≥ 0, b ≥ 0, c ≥ 2, d ≥ 2.

For e = 1, I) a = 0, b = 0, c = 0

g(0, 0, 0, 0, 1) = −4.

g(0, 0, 0, d, 1) = {d− 3 | −1} , d ≥ 1.

For e = 1, II) d = 0

g(1, 0, 0, 0, 1) = −1.

g(a, 0, 0, 0, 1) = a− 1 , a ≥ 2.

g(0, 1, 0, 0, 1) = (−1) ∗ .

g(1, 1, 0, 0, 1) = 1 ∗ .

g(a, 1, 0, 0, 1) = {{(2a− 2)∗ | a + 1
2} | a} , a ≥ 2.

g(0, 2, 0, 0, 1) = (1
2) ∗ .

g(a, 2, 0, 0, 1) = a + 1 , a ≥ 1.

g(a, b, 0, 0, 1) = a + 1 , a ≥ 0, b ≥ 3.
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g(0, 0, 1, 0, 1) = −1.

g(1, 0, 1, 0, 1) = 1.

g(a, 0, 1, 0, 1) = {(2a− 2)∗ | a + 1
2} , a ≥ 2.

g(a, b, 1, 0, 1) = {2a + b− 1 | a + 1} , a ≥ 0, b ≥ 1.

g(a, b, c, 0, 1) = 2a + b , a ≥ 0, b ≥ 0, c ≥ 2.

For e = 1, III) c = 0

g(a, 0, 0, d, 1) = {2a + d− 3 | a} , a ≥ 1, d ≥ 1.

g(0, 1, 0, d, 1) = {(d− 1)∗ | 1
2} , d ≥ 1.

g(a, 1, 0, d, 1) = {(2a + d− 1)∗ | (a + 1)∗} , a ≥ 1, d ≥ 1.

g(a, b, 0, 1, 1) = {(2a + b− 1)∗, {2a + b− 1 | {2a + b− 1 | a + 2}} |
{2a + b− 1 | a + 1}, {{2a + b− 1 | a + 2} | a + 1}} , a ≥ 0, b ≥ 2.

g(a, b, 0, d, 1) = {(2a + b + d− 2)∗ | {{2a + b− 1 | a + 2} | a + 1}} , a ≥ 0, b ≥ 2, d ≥ 2.

For e = 1, IV) c = 1

g(0, 0, 1, d, 1) = {d− 1 | 0} , d ≥ 1.

g(a, 0, 1, d, 1) = {2a + d− 1 | a + 1} , a ≥ 1, d ≥ 1.

g(a, b, 1, d, 1) = {2a + b + d− 1 | {2a + b | a + 2}} , a ≥ 0, b ≥ 1, d ≥ 1.

For e = 1, V) c ≥ 2

g(a, b, c, d, 1) = {2a + b + d− 1 | 2a + b + 1} , a ≥ 0, b ≥ 0, c ≥ 2, d ≥ 1.

For e = 0, I) a = 0, b = 0

h(0, 0, 0, 0, 0) = −4.

h(0, 0, c, 0, 0) = c− 2 , c ≥ 1.

h(0, 0, 0, 1, 0) = −2.

h(0, 0, c, 1, 0) = (c− 1)∗ , c ≥ 1.

h(0, 0, c, d, 0) = {{2c + d− 3 | c} | c− 1} , c ≥ 0, d ≥ 2.
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For e = 0, II) c = 0, d = 0

h(1, 0, 0, 0, 0) = −1.

h(a, 0, 0, 0, 0) = {a− 2 | {a− 2 | 3}} , a ≥ 2.

h(0, 1, 0, 0, 0) = −2.

h(a, 1, 0, 0, 0) = a− 1 , a ≥ 1.

h(0, 2, 0, 0, 0) = −1
2 .

h(a, 2, 0, 0, 0) = a∗ , a ≥ 1.

h(0, 3, 0, 0, 0) = {1
2 | 0}.

h(a, 3, 0, 0, 0) = {(a + 1)∗ | a} , a ≥ 1.

h(a, b, 0, 0, 0) = {(a + 1)∗ | a} , a ≥ 0, b ≥ 4.

For e = 0, III) b = 0

h(a, 0, c, 0, 0) = a + c− 3
2 , a ≥ 1, c ≥ 1.

h(1, 0, 0, 1, 0) = ∗.
h(2, 0, 0, 1, 0) = 3

2 ∗ .

h(3, 0, 0, 1, 0) = 5
2 ∗ .

h(4, 0, 0, 1, 0) = 27
8 .

h(a, 0, 0, 1, 0) = {a− 1 | {a− 1 | 5}} , a ≥ 5.

h(a, 0, c, 1, 0) = (a + c− 1
2)∗ , a ≥ 1, c ≥ 1.

h(a, 0, 0, 2, 0) = {{2a− 1 | a + 1
2} | a− 1

2} , a = 1, 2, 3, 4, 5.

h(6, 0, 0, 2, 0) = {{11 | 6∗} | 11
2 }.

h(a, 0, 0, 2, 0) = {a | a− 1
2} , a ≥ 7.

h(a, 0, c, d, 0) = {{2a + 2c + d− 3 | a + c + 1
2} | a + c− 1

2} , a ≥ 1, c ≥ 1, d = 2

or a ≥ 1, c ≥ 0, d ≥ 3.

For e = 0, IV) d = 0, 1, b ≥ 1

h(a, b, c, 0, 0) = a + c− 1 , a ≥ 0, b ≥ 1, c ≥ 1.

h(0, 1, 0, 1, 0) = −1
2 .

h(a, 1, 0, 1, 0) = a∗ , a ≥ 1.
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h(0, 2, 0, 1, 0) = {1
2 | 0}.

h(a, 2, 0, 1, 0) = {(a + 1)∗ | a} , a ≥ 1.

h(a, b, 0, 1, 0) = {{{2a + b− 2∗, {2a + b− 2 |
{2a + b− 2 | a + 2}} | {2a + b− 2 | a + 1},
{{2a + b− 2 | a + 2} | a + 1}} | a + 1} | a}

, a ≥ 0, b ≥ 3.

h(a, b, c, 1, 0) = (a + c)∗ , a ≥ 0, b ≥ 1, c ≥ 1.

For e = 0, V) d ≥ 2, b ≥ 1

h(a, b, c, d, 0) = {{2a + b + 2c + d− 3 | a + c + 1} | a + c} , a ≥ 0, b ≥ 1, c ≥ 0, , d ≥ 2.

For e = 1, I) a = 0, b = 0

h(0, 0, 0, 0, 1) = −3.

h(0, 0, c, 0, 1) = c− 1 , c ≥ 1.

h(0, 0, c, d, 1) = {2c + d− 2 | c} , c ≥ 0, d ≥ 1.

For e = 1, II) c = 0, d = 0

h(1, 0, 0, 0, 1) = 0.

h(a, 0, 0, 0, 1) = {a− 1 | {a− 1 | 4}} , a ≥ 2.

h(0, 1, 0, 0, 1) = −1.

h(a, 1, 0, 0, 1) = a , a ≥ 1.

h(0, 2, 0, 0, 1) = 1
2 .

h(a, 2, 0, 0, 1) = (a + 1)∗ , a ≥ 1.

h(a, b, 0, 0, 1) = {{2a + b− 2∗, {2a + b− 2 | {2a + b− 2 | a + 2}}
| {{2a + b− 2 | a + 2} | a + 1},
{2a + b− 2 | a + 1}} | a + 1}
, a ≥ 0, b ≥ 3.
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For e = 1, III) b = 0

h(a, 0, c, 0, 1) = a + c− 1
2 , a ≥ 1, c ≥ 1.

h(a, 0, 0, 1, 1) = {2a− 1 | a + 1
2} , 1 ≤ a ≤ 4.

h(a, 0, 0, 1, 1) = {2a− 1 | {a | 6}} , a ≥ 5.

h(a, 0, c, 1, 1) = {2a + 2c− 1 | a + c + 1
2} , a ≥ 1, c ≥ 1.

h(a, 0, c, d, 1) = {2a + 2c + d− 2 | a + c + 1
2} , a ≥ 1, c ≥ 0, d ≥ 2

For e = 1, IV) d = 0, b ≥ 1

h(a, b, c, 0, 1) = a + c , a ≥ 0, b ≥ 1, c ≥ 1.

For e = 1, V) d ≥ 1, b ≥ 1

h(a, b, c, d, 1) = {2a + b + 2c + d− 2 | a + c + 1} , a ≥ 0, b ≥ 1, c ≥ 0, , d ≥ 1.

First for d = 0, e = 0

i(0, 0, 0, 0, 0) = −3.

i(1, 0, 0, 0, 0) = (−1) ∗ .

i(a, 0, 0, 0, 0) = a− 1 , a ≥ 2.

i(a, 1, 0, 0, 0) = a∗ , a ≥ 0.

i(a, b, 0, 0, 0) = {a + 2b− 2 | a + 2b− 2} , a = 0, 1, 2, b ≥ 2.

i(3, b, 0, 0, 0) = (2b + 1
2)∗ , b ≥ 2.

i(a, b, 0, 0, 0) = a + 2b− 3 , a ≥ 4, b ≥ 2.

i(a, b, c, 0, 0) = a + 2b + c− 1 , a = 0, 1, 2, b ≥ 0, c ≥ 1.

i(3, 0, 1, 0, 0) = 3.

i(3, b, 1, 0, 0) = 2b + 5
2 , b ≥ 1.

i(3, b, c, 0, 0) = 2b + c + 2 , b ≥ 0, c ≥ 2.

i(a, 0, 1, 0, 0) = a , a ≥ 4.

i(a, b, 1, 0, 0) = (a + 2b− 1)∗ , a ≥ 4, b ≥ 1.

i(a, b, c, 0, 0) = a + 2b + c− 1 , a ≥ 0, b ≥ 0, c ≥ 2.
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Second for d ≥ 1, e = 0

i(0, 0, 0, 1, 0) = −1.

i(1, 0, 0, 1, 0) = 0.

i(a, 0, 0, 1, 0) = a∗ , a ≥ 2.

i(a, b, 0, 1, 0) = a + 2b− 1 , a ≥ 0, b ≥ 1.

i(a, b, 1, 1, 0) = (a + 2b + 1)∗ , a = 0, 1, 2, b ≥ 0.

i(3, 0, 1, 1, 0) = 4 ∗ .

i(3, b, 1, 1, 0) = 2b + 15
4 , b ≥ 1.

i(a, 0, 1, 1, 0) = (a + 1)∗ , a ≥ 4.

i(a, b, 1, 1, 0) = a + 2b , a ≥ 4, b ≥ 1.

i(a, b, c, 1, 0) = (a + 2b + c)∗ , a ≥ 0, b ≥ 0, c ≥ 2.

i(a, b, c, 2, 0) = {{2a + 3b + 2c | a + 2b + c + 1} | a + 2b + c} , a = 0, 1, 2, b ≥ 0, c ≥ 0.

i(3, 0, 0, 2, 0) = {{6 | 4} | 3}.
i(3, b, 0, 2, 0) = {{3b + 6 | 2b + 7

2} | 2b + 3} , b ≥ 1.

i(3, b, c, 2, 0) = {{3b + 2c + 6 | 2b + c + 4} | 2b + c + 3} , b ≥ 0, c ≥ 1.

i(a, 0, 0, 2, 0) = {{2a | a + 1} | a} , a ≥ 4.

i(a, b, 0, 2, 0) = (a + 2b)∗ , a ≥ 4, b ≥ 1.

i(a, b, c, 2, 0) = {{2a + 3b + 2c | a + 2b + c + 1} | a + 2b + c} , a ≥ 4, b ≥ 0, c ≥ 1.

i(a, b, c, d, 0) = {{2a + 3b + 2c + d− 2 | a + 2b + c + 1} | a + 2b + c} , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 3.

Third for d = 0, e = 1

i(0, 0, 0, 0, 1) = −2.

i(1, 0, 0, 0, 1) = ∗.
i(a, 0, 0, 0, 1) = a , a ≥ 2.

i(a, 1, 0, 0, 1) = (a + 1)∗ , a ≥ 0.
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i(a, b, 0, 0, 1) = {a + 2b− 1 | a + 2b− 1} , a = 0, 1, 2, b ≥ 2.

i(3, b, 0, 0, 1) = (2b + 3
2)∗ , b ≥ 2.

i(a, b, 0, 0, 1) = a + 2b− 2 , a ≥ 4, b ≥ 2.

i(a, b, c, 0, 1) = a + 2b + c , a = 0, 1, 2, b ≥ 0, c ≥ 1.

i(3, 0, 1, 0, 1) = 4.

i(3, b, 1, 0, 1) = 2b + 7
2 , b ≥ 1.

i(3, b, c, 0, 1) = 2b + c + 3 , b ≥ 0, c ≥ 2.

i(a, 0, 1, 0, 1) = a + 1 , a ≥ 4.

i(a, b, 1, 0, 1) = (a + 2b)∗ , a ≥ 4, b ≥ 1.

i(a, b, c, 0, 1) = a + 2b + c , a ≥ 0, b ≥ 0, c ≥ 2.

Note: i(a, b, c, 0, 1) = i(a, b, c, 0, 0) + 1, a ≥ 0, b ≥ 0, c ≥ 0.

Fourth for d ≥ 1, e = 1

i(a, 0, 0, 1, 1) = {2a | a + 1} , a ≥ 0.

i(a, b, 0, 1, 1) = {2a + 3b | {a + 2b | 2b + 4}} , a ≥ 0, b ≥ 1.

i(a, b, c, 1, 1) = {2a + 3b + 2c | a + 2b + c + 1} , a ≥ 0, b ≥ 0, c ≥ 1.

i(a, b, c, d, 1) = {2a + 3b + 2c + d− 1 | a + 2b + c + 1} , a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

First for c = 0, d = 0

j(0, 0, 0, 0) = −4.

j(1, 0, 0, 0) = −1.

j(a, 0, 0, 0) = {a− 2 | {a− 2 | 3}} , a ≥ 2.

j(0, 1, 0, 0) = (−1) ∗ .

j(a, 1, 0, 0) = {a− 1
2 | {a− 1 | {a− 1 | 3}}} , a ≥ 1.

j(0, 2, 0, 0) = {1
4 | −1

4}.
j(a, 2, 0, 0) = {{2a | a + 1

2} | {a∗ | a}} , a ≥ 1.

j(a, b, 0, 0) = {{2a + b− 2 | a + 1
2} | {{{2a + b− 3 | a + 1} | a} | a}} , a ≥ 0, b ≥ 3.
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Second for c = 0, d ≥ 1

j(0, 0, 0, d) = −2 , d ≥ 1.

j(a, 0, 0, d) = a− 1 , a ≥ 1, d ≥ 1.

j(0, 1, 0, d) = −1
2 , d ≥ 1.

j(a, 1, 0, d) = a∗ , a ≥ 1, d ≥ 1.

j(a, b, 0, d) = {{2a + b− 2 | a + 1} | a} , a ≥ 0, b ≥ 2, d ≥ 1.

Third for c = 1, d = 0

j(0, 0, 1, 0) = −1.

j(a, 0, 1, 0) = a− 1
2 , a ≥ 1.

j(a, b, 1, 0) = {2a + b− 1 | a + 1
2} , a ≥ 0, b ≥ 1.

Fourth for c = 1, d ≥ 1

j(0, 0, 1, d) = −1 , d ≥ 1.

j(a, 0, 1, d) = a , a ≥ 1, d ≥ 1.

j(a, b, 1, d) = {2a + b− 1 | a + 1} , a ≥ 0, b ≥ 1, d ≥ 1.

Fifth for c ≥ 2

j(a, b, c, d) = 2a + b , a ≥ 0, b ≥ 3, c ≥ 2, d ≥ 0.

First for b = 0, d = 0

k(0, 0, 0, 0) = −3.

k(1, 0, 0, 0) = (−1) ∗ .

k(a, 0, 0, 0) = {a− 2 | 3} , a ≥ 2.

k(0, 0, c, 0) = (c− 2)∗ , c ≥ 1.

k(a, 0, c, 0) = a + c− 1 , a ≥ 1, c ≥ 1.
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Second for b ≥ 1, d = 0

k(0, 1, 0, 0) = −1.

k(a, 1, 0, 0) = {a− 1 | {a− 1 | 3}} , a ≥ 1.

k(0, 2, 0, 0) = −1
4 .

k(a, 2, 0, 0) = {a∗ | a} , a ≥ 1.

k(a, b, 0, 0) = {{{2a + b− 3 | a + 1} | a} | a} , a ≥ 0, b ≥ 3.

k(a, b, c, 0) = a + c− 1
2 , a ≥ 0, b ≥ 1, c ≥ 1.

Third for b = 0, d ≥ 1

k(0, 0, c, d) = c− 1 , c ≥ 0, d ≥ 1.

k(a, 0, 0, 1) = a− 1
2 , a = 1, 2, 3, 4.

k(a, 0, 0, 1) = {a− 1 | 5} , a ≥ 5.

k(a, 0, c, d) = a + c− 1
2 , a ≥ 1, c ≥ 1, d = 1

or a ≥ 1, c ≥ 0, d ≥ 2.

Fourth for b ≥ 1, d ≥ 1

k(a, b, c, d) = a + c , a ≥ 0, b ≥ 1, c ≥ 0, d ≥ 1.

l(0, 0, 0, 0) = −2.

l(1, 0, 0, 0) = −1.

l(a, 0, 0, 0) = (a− 1)∗ , a ≥ 2.

l(a, 1, 0, 0) = {a∗ | 3} , a ≥ 0.

l(a, b, 0, 0) = {a + 2b− 3 | 2b + 1} , a ≥ 0, b ≥ 2.

l(a, 0, 1, 0) = a∗ , a ≥ 0.

l(a, b, 1, 0) = (a + 2b)∗ , a = 0, 1, 2, b ≥ 1.

l(3, b, 1, 0) = (2b + 5
2)∗ , b ≥ 1.

l(a, b, 1, 0) = a + 2b− 1 , a ≥ 4, b ≥ 1.
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l(a, b, c, 0) = (a + 2b + c− 1)∗ , a ≥ 0, b ≥ 0, c ≥ 2.

l(a, 0, 0, 1) = a , a ≥ 0.

l(a, b, 0, 1) = {a + 2b− 1 | 2b + 3} , a ≥ 0, b ≥ 1.

l(a, b, c, d) = a + 2b + c , a ≥ 0, b ≥ 0, c ≥ 1, d = 1

or a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 2.

First for b = 0, a = 0

m(0, 0, c) = c− 2 , c ≥ 0.

Second for b = 0, c = 0 , (a ≥ 1)

m(1, 0, 0) = {0 | −1
2}.

m(2, 0, 0) = 1 ∗ .

m(3, 0, 0) = 2 ∗ .

m(4, 0, 0) = 11
4 .

m(a, 0, 0) = 3 , a ≥ 5.

m(a, 0, c) = (a + c− 1)∗ , a ≥ 1, c ≥ 1.

m(a, 1, 0) = {a− 1 | 3} , a ≥ 0.

m(a, 1, c) = a + c , a ≥ 0, c ≥ 1.

m(a, b, c) = a + c , a ≥ 0, b ≥ 2, c ≥ 0.

n(0, 0, 0) = −1.

n(1, 0, 0) = −1
2 .

n(a, 0, 0) = {(a− 1)∗ | 0} , a ≥ 2.

n(a, 1, 0) = {{a∗ | 3} | 2} , a ≥ 0.

n(a, b, 0) = {{a + 2b− 3 | 2b + 1} | 2b} , a ≥ 0, b ≥ 2.
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n(a, 0, 1) = {a∗ | 3} , a ≥ 0.

n(a, b, 1) = {a + 2b− 1 | 2b + 3} , a ≥ 0, b ≥ 1.

n(a, b, c) = a + 2b + c− 1 , a ≥ 0, b ≥ 0, c ≥ 2.

o(a, b) = 2b , a ≥ 0, b ≥ 0.

3.4 Positions with one ¤

In this section we classify all the positions that have one ¤. The lemmas below give a

recurrence to the positions. We can compute the values of the positions in polynomial

time. We omit the proofs here.

Notation

O(x) = {0 | x}.
Oa(x) = O(...(O(O(x)))) a times.

L̃ = any combination of T and F that has F as its rightmost entry. For example TTFTF.

R̃ = any combination of T and F that has T as its left most entry. For example TFFTF.

Lemma 3.4.1. Death Leaps Principle(DLP): The position with one empty square

for which the only possible move for both sides is a jump has value 0. For example

TFTTF¤TFTFF.

Lemma 3.4.2. L̃T¤FR̃ = ∗.

Lemma 3.4.3. L̃Ta¤FbR̃ = ∗, a ≥ 2, b ≥ 2.

Lemma 3.4.4. L̃Ta¤(TF)bTFcR̃ = {a − 1 | (Ob(L̃TaF(TF)bT¤Fc−1R̃)}, a ≥ 1, b ≥
0, c ≥ 2.

L̃Ta¤F(TF)bTFcR̃ = {{a − 2 | Ob+1(L̃Ta−1F(TF)b+1T¤Fc−1R̃)} || 0}, a ≥ 2, b ≥
0, c ≥ 2.
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Example 1: Ta¤F(TF)bTF2 = {{a− 2 | Ob+1(∗)} || 0}, a ≥ 1, b ≥ 0.

Example 2: T3¤F(TF)bTFc = {{1 | Ob+1(T2F(TF)b+1T¤Fc−1)} || 0}, b ≥ 0, c ≥ 2.

Example 3: Ta¤F(TF)bTF4 = {{a−2 | Ob+1(Ta−1F(TF)b+1T¤F3)} || 0}, a ≥ 3, b ≥
0.

Note) We get the implicit value of example 2 from example 1 and implicit value of

example 3 from example 2. We will get the value recursively this way.

Lemma 3.4.5. L̃Ta¤(TF)b = {a− 1 | (1
2)b−1}, a ≥ 1, b ≥ 1.

Lemma 3.4.6. L̃Ta¤F(TF)b = {{a− 2 | (1
2)b} || 0}, a ≥ 2, b ≥ 0.

Lemma 3.4.7. L̃Ta¤F(TF)bTFcR̃ = Ta¤F(TF)bTFc, b ≥ 0

when (c is even and a ≥ c− 1) or (a is odd and c ≥ a− 1).

Note:

1) When a is even ,a ≥ 2 and c is odd ,c ≥ 3, The recursive is going to bounce back

and forth between positions.

We will refer to R̃ if a > c. We will refer to L̃ if c > a. Then the positions will start

over again.

2) When a is even , c is even and a < c− 1 then we will refer to L̃.

When a is odd , c is odd and c < a− 1 then we will refer to R̃.

3.5 Result of class with three frogs.

ClassA13: ¤FFF
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Let f(a, b, c, d) be the value of Ta¤TbFTcFTdF.

Let g(a, b, c, d) be the value of TaFTb¤TcFTdF.

Let h(a, b, c, d) be the value of TaFTbFTc¤TdF.

Let i(a, b, c) be the value of TaFTbFTcF¤.

Note:

1) In f we omit the case where c ≥ 2 or d ≥ 2 since it will reduce to the results in

ClassA11 and ClassA12 respectively.

2) In g, h we omit the case where d ≥ 2 since it will reduce to the results of ClassA12.

f(0, 0, 0, 0) = −3.

f(1, 0, 0, 0) = {0 | (−1)∗}.
f(a, 0, 0, 0) = ∗ , a ≥ 2.

f(0, 1, 0, 0) = 0.

f(1, 1, 0, 0) = {0 | {0 | −1
4}}.

f(a, 1, 0, 0) = {a− 1 | {0 | {{{{a− 3 | 1
4} | 0} | 0} | 0}}} , a ≥ 2.

f(a, b, 0, 0) = a , a ≥ 0, b ≥ 2.

f(0, 0, 1, 0) = −1.

f(a, 0, 1, 0) = {{a− 2 | {0 | ∗}} | 0} , a ≥ 1.

f(a, 1, 1, 0) = {a− 1 | {0 | ∗}} , a ≥ 0.

f(a, b, 1, 0) = a , a ≥ 0, b ≥ 2.

f(0, 0, 0, 1) = −2.

f(1, 0, 0, 1) = {0 | −1
2}.

f(a, 0, 0, 1) = ∗ , a ≥ 2.
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f(a, 1, 0, 1) = {a− 1 | ∗} , a ≥ 0.

f(a, b, 0, 1) = a , a ≥ 0, b ≥ 2.

f(0, 0, 1, 1) = −1.

f(a, 0, 1, 1) = {{a− 2 | 1
4} | 0} , a ≥ 1.

f(a, 1, 1, 1) = {a− 1 | 1
4} , a ≥ 0.

f(a, b, 1, 1) = a , a ≥ 0, b ≥ 2.

g(0, 0, 0, 0) = −2.

g(1, 0, 0, 0) = (−1) ∗ .

g(a, 0, 0, 0) = {{{a− 3 | {0 | ∗}} | 0} | −1} , a ≥ 2.

g(0, 1, 0, 0) = {0 | −1
2}.

g(1, 1, 0, 0) = {0 | −1
4}.

g(a, 1, 0, 0) = {0 | {{{{a− 3 | 1
4} | 0} | 0} | 0}} , a ≥ 2.

g(a, b, 0, 0) = ∗ , a ≥ 0, b ≥ 2.

g(a, b, 1, 0) = {b− 1 | ∗} , a ≥ 0, b ≥ 0.

g(0, 0, 0, 1) = −1.

g(1, 0, 0, 1) = −1
2 .

g(a, 0, 0, 1) = {{{a− 3 | 1
4} | 0} | 0} , a ≥ 2.

g(a, b, 0, 1) = {{b− 2 | 1
2} | 0} , a ≥ 0, b ≥ 1.

g(a, b, 1, 1) = {b− 1 | 1
2} , a ≥ 0, b ≥ 0.

g(a, b, c, d) = b , a ≥ 0, b ≥ 0, c ≥ 2, d ≥ 0.

h(a, 0, 0, 0) = −1 , a ≥ 0.

h(a, 0, c, 0) = {{c− 2 | 1} | 0} , a ≥ 0, c ≥ 1.

h(0, 1, 0, 0) = −1
2 .

h(1, 1, 0, 0) = −1
4 .

h(a, 1, 0, 0) = {{{{a− 3 | 1
4} | 0} | 0} | 0} , a ≥ 2.

h(a, b, 0, 0) = {{{b− 3 | 1
2} | 0} | 0} , a ≥ 0, b ≥ 2.

h(a, b, c, 0) = {{c− 2 | 1} | 0} , a ≥ 0, b ≥ 1, c ≥ 1.
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h(a, 0, c, 1) = {c− 1 | 1} , a ≥ 0, c ≥ 0.

h(a, b, 0, 1) = 0 , a ≥ 0, b ≥ 1.

h(a, b, 1, 1) = 1
2 , a ≥ 0, b ≥ 1.

h(a, b, c, 1) = {c− 1 | 1} , a ≥ 0, b ≥ 1, c ≥ 2.

i(a, b, c) = 0 , a ≥ 0, b ≥ 0, c ≥ 0.

3.6 Result of class B.

ClassB11: ¤F

Let f(a, b, c) be the value of ¤aT¤bF¤c.

Values:

f(a, b, c) = {c− a− 2 | c− a + 2} , a ≥ 0, c ≥ 0 and b is even.

f(a, b, c) = {{c− a− 3 | c− a + 1} | {c− a− 1 | c− a + 3}} , a ≥ 0, c ≥ 0 and b is odd.
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Chapter 4

Further Hopping with Toads and Frogs

4.1 Introduction

In this chapter we investigate the patterns of the values of positions of Toads and Frogs

which do not follow from the finite state method discussed in the previous two chapters.

We prove new values, new conjectures, and outline future work.

4.2 The general classes A and B

Definition:

General class Ai: All positions with (numeric) i number of ¤ (with symbols on both T

and F).

General class Bi: All positions with (numeric) i number of F (with symbols on both T

and ¤).

The general classes A and B are generalizations of the classes A and B discussed in

chapter 2.

For the general class, we can not apply the finite state method that we used in chap-

ter 2 since we now have infinitely many positions that come from the combination of

the two letters with symbols on them. However we managed to categorize all positions

in the general class A1, the class of all positions with exactly on ¤. It is in fact the

only general class that we managed to solve.

Many positions in these classes do not have a nice compact formula; for example in
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A2, Ta¤TF¤TFb. On the other hand, many positions have a nice formula. We will

prove some of the starting positions like Ta¤¤Fa, Ta¤¤Fb later on in the appendix to

this chapter.

Once we detect the patterns of the positions, the proof is quite routine. We now

do the proof for each specific position by hand with the help of a computer. We hope

to see the computer playing a more active role in assisting with the proofs in the future.

4.3 Table

We present the values of some starting positions in this section. We have a fast program

written in Java to calculate the outcome of the sum of two given positions (=,>,<,||).
This program does not calculate the value of the sum of two games. It only gives

the outcome. It works well with the positions that have a simple value. The author’s

brother and the author wrote this program originally to check the value of the game of

the form Ta¤bFa for which so far the values of the game are 0 or * except the column

b=2 which will be proved to be infinitesimal when a ≥ 4. The program can be down-

loaded from the author’s websit,e and we present the tables here.

a\b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0
2 ∗ ∗ ∗ ∗ 0 0 ∗ 0 0 0 0 0 ∗ 0 0 0 0 0 ∗ 0
3 ∗ ±1

8 0 ∗ 0 ∗ 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0
4 ∗ N ∗ 0 0 0 0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0 0
5 ∗ N ∗ ∗ ∗ 0 ∗ 0 0 0 6= 0 0
6 ∗ N ∗ ∗ ∗ ∗ ∗ 6= 0
7 ∗ N ∗ ∗ ∗ 6= 0 6= 0
8 ∗ N ∗ ∗ ∗
9 ∗ N ∗ ∗
10 ∗ N ∗ ∗

Figure 4.1: Ta¤bFa

Note 1) For b where 21 ≤ b ≤ 103,T2¤bF2 = 0 except b = 25,31,37,43,49,55,61,67,73,79,85,91,97,103.
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Note 2) For b where 21 ≤ b ≤ 53, T3¤bF3 = 0 except b = 29.

Note 3) N is an infinitesimal, it is long. We are not writing it out here.

a\b 3 4 5 6
1 2∗ 3 4∗ 5
2 1∗ 2∗ 3 7

2
3 {1 | {1

2 | 0}} 1∗ 2 11
4

4 1∗ {{2∗ | 1∗} || {1
2 | 0}} 1 2

5 1∗ 1∗ 5
4 < V < 2 1

6 1∗ 1∗ 2∗ 1 < V < 2
7 1∗ 1∗ || 2
8 1∗ 1∗ || 2

Figure 4.2: Ta+1¤bFa, first part

a\b 7 8 9 10 11 12 13 14 15 16
1 6∗ 7 8∗ 9 10∗ 11 12∗ 13 14∗ 15
2 5∗ 11

2
13
2

15
2

17
2

19
2

41
4

23
2 12∗ 13

3 15
4

9
2 < 11

2 < 6
4 5

2 < V < 3 < 4
5 5

2 < V < 3
6 < 2 and || 3
7

Figure 4.3: Ta+1¤bFa, second part

a\b 3 4 5 6 7 8 9 10 11 12
1 4∗ 6 8∗ 10 12∗ 14 16∗ 18 20∗ 22
2 2∗ 4∗ 95

16
15
2 9∗ {11 | 11∗} 12 29

2 15∗ 17∗
3 3

2 {{5
2 | 2} || 2} 4 {11

2 | 41
8 } 7

4 2∗ {{4∗ | 2∗} || {3
2 | 1}} 3 4 5∗

5 2∗ 2∗ 3 < V < 4 3 5
6 2∗ 2∗ || 4
7 2∗ 2∗ < 3

Figure 4.4: Ta+2¤bFa
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a\b 3 4 5 6 7 8
1 6∗ 9 12∗ 15 18∗ 21
2 3∗ {6 | 11

2 }) {17
2 | 8}) 11∗ 13 31

2
3 5

2 L 41
8 || 8

4 3∗ 5
2 5 || 5

5 3∗ || 3 5 < V < 6
6 3∗ 3∗

Figure 4.5: Ta+3¤bFa

Note 1) ||G means “can not be compared to G”.
Note 2) We drop the values of the first two columns where b = 1, 2 since they will all
be proved in the appendix.
Note 3) L means long. We are not writing it out here.

Erickson’s conjecture 4 is false since T7¤7F6 > 2.

(Erickson’s conjecture 4: Ta¤aFa−1 = 1 or {1 | 1} for all a ≥ 1.)

We believe that there are no patterns in a for positions of the form Ta+k¤a+lFa;

for any fixed k ≥ 1, l ≥ 0.

4.4 New Conjectures and Future Work

In [4], Jeff Erickson made 6 conjectures. Jesse Hull proved conjecture 6 (Toads and

Frogs is NP-hard) in 2000. In this thesis I proved conjecture 1 (in collaboration with

Zeilberger) (next chapter), 2 (previous chapter), 3 (next chapter) and disproved con-

jecture 4. Conjecture 5 is still open. We restate conjecture 5 here.

Erickson’s conjecture 5:

Ta¤bFa is an infinitesimal for all a,b except (a,b) =(3,2)

This conjecture seems very interesting and hard but ,I think, not impossible to
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prove. We split Erickson’s fifth conjecture into 2 stronger conjectures which are con-

jectures 3 and 4 here.

We believe that there are still a lot of nice patterns and conjectures in this game

that we overlooked. Once RAM gets cheaper and Maple gets faster, we will have more

information.

Conjecture 1) Assume b ≥ 0, a ≥ 1, L ≥ 0 and R ≥ 0

1.1) ¤RTa¤bF¤R =





{{a− 2 | 1} | 0} if R = 0 and b = 1

(a− 1)(b− 1 + R) if b is even

(a− 1)(b− 1 + R)∗ if b is odd and(R, b) 6= (0, 1)

1.2) For R ≥ 1, ¤R−1Ta¤bF¤R =





(a− 1)(b− 1 + R) if b is even

1/2 + (a− 1)(b− 1 + R) if b is odd

1.3) For R− L ≥ 2, ¤LTa¤bF¤R = (R− L− 1) + (a− 1)(b− 1 + R)

Conjecture 2) For a ≥ 7, TT¤aFF =




∗ when a = 7 + 6n, n ≥ 0

0 otherwise.

Conjecture 3) Ta¤bFa = ∗ for any a > b > 0, except for b = 2.

Conjecture 4) Ta¤bFa = 0 or ∗ for any b ≥ a > 0.

Conjecture 5) For a fixed integer C ≥ 3, ∃a0 such that TC¤aFC = 0 for all a ≥ a0.

Future Work

1) Categorize all the positions that have exactly one Frog (general class B1) (conjecture

1 might be a good start).



58

Chapter 5

More Values of positions in “Toads and Frogs”

5.1 Introduction

In this chapter we prove the values of four infinite families of starting positions, three

of which could not be solved by Symbolic Finite-state method. All four positions have

beautiful values. This shows that the patterns of the values of the game “Toads and

Frogs” are not only restricted to the classes Aij or Bij but also for the general class Ai.

The proofs in this chapter are tedious. But in the future, we hope to have a new

method (hopefully along the same lines as the Symbolic Finite-state method) for mak-

ing the proofs more automatic or at least shorten them.

5.2 Lemma and Convention

We will refer to the lemma below a lot. We state it here.

Lemma 5.2.1. One side Death Leap Principle (One side DLP): if X is the position

where the only possible move of Left is a jump and there is no two or more consecutive

empty square in X then X ≤ 0.

Proof We have to show that when Left moves first and two players take turn playing,

Left will lost(Left will run out of the legal move first). This is true since after Left

jumps over one of the F, Right can response by moving to the empty square where the

F was jumped over.
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Example 1)TTF¤TTF¤F ≤ 0.

Example 2) TTTF¤F¤TF ≤ 0.

Convention:

In the following sections of the appendix, we will prove the positions using the

“shorthand” notation. We explain by example.

Example: To show: TaF¤TkFT¤Fb ≤ 1
2 ; k ≥ 0, a ≥ 0, b ≥ 1.

We will have to show TaF¤TkFT¤Fb − 1
2 ≤ 0.

That is to show TaF¤TkFT¤Fb − {0 | 1} ≤ 0.

To show G ≤ 0 we need to show that when Left moves first and two players take

turn playing, Right will win. (On the other hand, to show G ≥ 0 we need to show that

when Right moves first and two players take turn playing, Left will win.)

We will show that in these two sum games, for all the possible choices of Left moves,

Right can find a response to the move so that he will win at the end.

We will do some case analysis here. In the above position Left has three choices.

In the proof we will see

2→
Ta F¤TkF

1→
T ¤Fb ≤

3←
1
2 .

We will write the response of Right immediately.
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Case 1: TaF¤TkF¤TFb ≤ 0.

Explanation: Right responds by picking the left option of {0 | 1} on the right hand

side.

Case 2: Ta−1F¤Tk+1FT¤Fb ≤ 1
2 .

Explanation: Right responds by moving the left most F.

Case 3: TaF¤TkFTF¤Fb−1 ≤ 1.

Explanation: Left picks the right option of {0 | 1} on the right hand side. Right

responds by moving the rightmost F.

Note:

1) When the position simplifies to one of the known ones of chapter 3 (which are

mostly positions in class A), we will claim such results without reproving them.

2) The positions we considered in Toads and Frogs are “hot”, which means that

the players select a good move and fight for an advantage. We will not consider the

possible moves in a cold game which is a whole integer.

5.3 Ta¤¤Fa, a ≥ 4

We show Ta¤¤Fa is an infinitesimal , a ≥ 4. The observation comes from table 2 of

chapter 4 when b = 2.

Lemma 5.3.1. For any fixed integer n ≥ 3 , L̃
2→

Ta F¤TkF
1→
T ¤Fb ≤

3←
1
2n , k ≥ 0, a ≥

0, b ≥ 1.
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Prove: By induction on a.

Base Case: a = 0, ¤TkF
1→
T ¤Fb ≤

2←
1
2n .

Case 1: ¤TkF¤TFb ≤ 0, true by one side DLP.

Case 2: ¤TkFTF¤Fb−1 ≤ 2
2n . The left hand side is ≤ 0 by one side DLP.

Induction Step: L̃
2→

Ta F¤TkF
1→
T ¤Fb ≤

3←
1
2n .

Case 1: L̃TaF¤TkF¤TFb ≤ 0, true by one side DLP.

Case 2: L̃Ta−1F¤Tk+1FT¤Fb ≤ 1
2n , true by induction.

Case 3: L̃TaF¤TkFTF¤Fb−1 ≤ 2
2n . The left hand side is ≤ 0 by one side DLP.

Theorem 5.3.1. Ta¤¤Fa is an infinitesimal , a ≥ 4.

By symmetry we only need to show:

For any fixed integer n ≥ 3, Ta¤¤Fa ≤ 1
2n , a ≥ 4.

I→
Ta ¤¤Fa ≤

II←
1
2n .

I)
2→

Ta−1 ¤
1→
T F¤Fa−1 ≤

3←
1
2n

II)
1→

Ta ¤F¤Fa−1 ≤
2←
2
2n

I) Case 1:
1→

Ta−1 ¤F¤TFa−1 ≤
2←
1
2n

Case 1.1: Ta−2F
1→
T ¤¤TFa−1 ≤

2←
1
2n
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Case 1.1.1: Ta−2F¤TFT¤Fa−2 ≤ 1
2n , true by lemma C.1.

Case 1.1.2: Ta−2F
2→
T ¤F

1→
T ¤Fa−2 ≤

3←
2
2n

Case 1.1.2.1: Ta−2F
1→
T F¤¤TFa−2 ≤

2←
2
2n

Case 1.1.2.1.1: ¤T¤TFa−2 ≤ 2
2n .

The left hand side is {0 || {0 | {−1 | 5− a}}}.

Case 1.1.2.1.2: Ta−2FTF¤FT¤Fa−3 ≤ 4
2n , true by lemma C.1.

Case 1.1.2.2: Ta−2F¤TFTF¤Fa−3 ≤ 2
2n .

The left hand side is ≤ 0 by one side DLP.

Case 1.1.2.3: Ta−2F
2→
T ¤F

1→
T F¤Fa−3 ≤

3←
4
2n

Case 1.1.2.3.1: Ta−2FT¤F¤FTFa−3 ≤ 0

⇒ Ta−2F¤TFF¤TFa−3 ≤ 0

The statement is true by one side DLP.

Case 1.1.2.3.2: Ta−2F¤TFTFF¤Fa−4 ≤ 4
2n .

The left hand side is ≤ 0 by one side DLP.

Case 1.1.2.3.3: Ta−2FTF¤TF¤Fa−3 ≤ 8
2n .

The left hand side is ≤ 0 by one side DLP.

Case 1.2:
2→

Ta−1 ¤FF
1→
T ¤Fa−2 ≤

3←
2
2n
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Case 1.2.1: Ta−1F¤F¤TFa−2 ≤ 2
2n .

The left hand side is ≤ 0 by one side DLP.

Case 1.2.2: Ta−2FT¤FT¤Fa−2 ≤ 2
2n . This is the case 1.1.2

Case 1.2.3: Ta−1F¤FT¤Fa−2 ≤ 4
2n , true by lemma C.1.

Case 2: Ta−2¤TTFF¤Fa−2 ≤ 1
2n . The left hand side is 0.

Case 3:
1→

Ta−1 ¤TFF¤Fa−2 ≤
2←
2
2n

Case 3.1: Ta−2¤TTFF¤Fa−2 ≤ 0. This is clearly true.

Case 3.2: Ta−1FT¤F¤Fa−2 ≤ 4
2n . The left hand side is ≤ 0.

II) Case 1: Ta−1¤TFF¤Fa−2 ≤ 2
2n . This is I) case 3.

Case2:
1→

Ta ¤FF¤Fa−2 ≤
2←
4
2n

Case 2.1: Ta−1FT¤F¤Fa−2 ≤ 4
2n . This is I) case 3.2.

Case 2.2: TaF¤F¤Fa−2 ≤ 8
2n . The left hand side is ≤ 0 by one side DLP.

The theorem is proved. ¤
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5.4 Ta¤¤¤FFF, a ≥ 5

We show Ta¤¤¤FFF = a− 7
2 , a ≥ 5.

We are supposed to be able to prove the values of the class ¤¤¤FFF by a Symbolic

Finite-State method. Then the results above would follow as special cases of many po-

sitions in the class. But as we mentioned in chapter 4, we could not get the computer to

handle classes with three blanks and three frogs yet. It would takes days for a human

to do make such conjectures by hand. For now we prove the value of Ta¤¤¤FFF ,

a ≥ 5, which is Jeff Erickson’s conjecture 3, by hand. The proof is however assisted by

the Maple program written by the author.

Below is the outline.

Ta¤¤¤FFF = a− 7
2

Ta−1¤T¤F¤FF = a− 7
2

Ta−2¤TTF¤¤FF = a− 7
2

Ta−2¤TF¤T¤FF = a− 7
2

Ta−2¤¤FTTF¤F = a− 7
2

Ta−3¤TTF¤TF¤F = a− 7
2

Ta−3¤TF¤TTF¤F = a− 7
2

Ta−3¤TF¤TF¤TF = a− 7
2

Figure 5.1: Main tree
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We will work from the bottom of the main tree (figure 1) and work our way up.

Lemma 5.4.1. Ta−3¤TF¤TF¤TF = a− 7
2 , a ≥ 5.

Ta−3¤TF¤TF¤TF

a− 4 a− 4 a− 4

Ta−3FT¤¤¤FTTF Ta−4¤TTFFT¤¤TF Ta−3¤¤FTTFFT¤
{a− 3 | a− 3} (a− 4) + 1 = a− 3(a− 4) + 1 = a− 3

Figure 5.2: Ta−3¤TF¤TF¤TF = a− 7
2

Left options.

On the left hand side, Ta−3¤TF¤¤FTTF = Ta−3¤TF¤¤F = a− 4, a ≥ 4. We know

this values, chapter 3, from Symbolic Finite-state method we developed in chapter 2.

I need to show that the other options on the left hand side got dominated by this option.

L1: To Show Ta−4¤TTF¤TF¤TF ≤ a− 4.

L2: To Show Ta−3¤¤FTTF¤TF ≤ a− 4.

Right options.

R1: To Show Ta−3¤TF¤TF¤TF ≤ a− 3.

R2: To Show Ta−3¤TF¤TF¤TF ≤ {a− 3 | a− 3}.
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We see, from the picture, the three positions of the right side are {a− 3 | a− 3}, a− 3

and a− 3. We will show the statements R1 and R2 are true. Then by applying bypass

reversible move rule, we will have the value of the right options is a− 3.

Then we can conclude that Ta−3¤TF¤TF¤TF = {a− 4 | a− 3} = a− 7
2 .

Below are the proofs of statements L1, L2, R1, R2.

L1: To Show
3→

Ta−4 ¤T
2→
T F¤

1→
T F¤TF ≤ a− 4.

Case1: Ta−4¤TTF¤F¤ ≤ a− 4. The left hand side is {{a− 4 | a− 4} | a− 4}.

Case 2:
3→

Ta−4 ¤
2→
T F¤T

1→
T F¤TF ≤ a− 4.

Case 2.1: Ta−4¤TF¤TF¤ ≤ a− 4. The left hand side is a− 4.

Case 2.2: Ta−4¤¤FTTTFFT¤ ≤ a− 4. The left hand side is (a− 5) + 1.

Case 2.3: Ta−5¤TTF¤TTFFT¤ ≤ a− 4. The left hand side is (a− 5) + 1.

Case 3: Ta−5¤TTTFFT¤¤TF ≤ a− 4. The left hand side is (a− 5) + 1.

L2: To Show
2→

Ta−3 ¤¤FT
1→
T F¤TF ≤ a− 4.

Case1: Ta−3¤¤FTF¤ ≤ a− 4. The left hand side already is a− 4.

Case 2: Ta−4¤TF¤TTF¤TF ≤ a− 4 , this is the case 2 of L1.
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R1: To Show
3→

Ta−3 ¤
2→
T F¤

1→
T F¤TF ≤ a− 3.

Case1: Ta−3¤TF¤¤F ≤ a− 4. The left hand side is a− 4.

Case 2: Ta−3¤¤FTTFFT¤ ≤ a− 3. The left hand side is (a− 4) + 1.

Case 3: Ta−4¤TTFFT¤¤TF ≤ a− 3. The left hand side is (a− 4) + 1.

R2: To Show
3→

Ta−3 ¤
2→
T F¤

1→
T F¤TF ≤ {a− 3 |

4←
a− 3}.

Case 1: Ta−3¤TF¤¤F ≤ a− 3. The left hand side is a− 4.

Case 2: Ta−3¤¤FTTF¤TF ≤ a− 3. The left hand side is ≤ a− 4 by L2.

Case 3: Ta−4¤TTF¤TF¤TF ≤ a− 3. The left hand side is ≤ a− 4 by L1.

Case4: Ta−3F
2→
T ¤¤

1→
T F¤TF ≤ a− 3.

Case 4.1: Ta−3FT¤¤F¤ ≤ a− 3. The left hand side is {{a− 3 | a− 3} | a− 3}.

Case 4.2:
2→

Ta−3 F¤TF
1→
T ¤¤TF ≤ a− 3.

Case 4.2.1: Ta−3FFT¤¤T¤TF ≤ a − 3. The left hand side is {3 | 3} which

assure the statement for a ≥ 7.

Case 4.2.2: Ta−4F¤TTFT¤¤TF ≤ a− 3.
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⇒ Ta−2FT¤¤TF ≤ a− 3 , The left hand side is 1.

We now have lemma 2.1. We are now one step closer to the main theorem. We now

move up the picture to prove another statement.

Lemma 5.4.2. Ta−3¤TF¤TTF¤F = a− 7
2 , a ≥ 5.

Need to show:

I) Ta−3¤TF¤TTF¤F ≤ a− 7
2 .

II) Ta−3¤TF¤TTF¤TF ≥ a− 7
2 .

I) To Show
3→

Ta−3 ¤
2→
T F¤T

1→
T F¤F ≤

4←
a− 7

2 .

Case1: Ta−3¤TF¤TF¤TF ≤ a− 7
2 . This is true by lemma 2.1.

Case 2: Ta−3¤¤FTTTFF¤ ≤ a− 7
2 . The left hand side is a− 4.

Case 3: Ta−4¤TTF¤ ≤ a− 7
2 . The left hand side is a− 4.

Case 4: Ta−3¤TF¤ ≤ a− 3. The left hand side is a− 3.

II) To Show Ta−3¤T
1←
F ¤TTF¤

2←
F ≥

3→
a− 7

2 .

Case1: Ta−3F¤T¤TTF¤F ≥ a− 7
2 . The left hand side is ≥ 1 + (a− 3)− 1 = a− 3.
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Case 2: Ta−3¤TF¤ ≥ a− 3. The left hand side is a− 3.

Case 3: Ta−3¤T
1←
F ¤T¤

2←
F TF ≥ a− 4.

Case 3.1: Ta−3F¤T¤T¤FTF ≥ a− 4.

The left hand side is ≥ 1 + (a− 3)− 1 = a− 3.

Case 3.2: a− 4 ≥ a− 4. by lemma 2.1.

We prove lemma 2.2 here.

Lemma 5.4.3. Ta−2¤¤FTTF¤F = a− 7
2 , a ≥ 5.

Need to show :

I) Ta−2¤¤FTTF¤F ≤ a− 7
2 .

II) Ta−2¤¤FTTF¤F ≥ a− 7
2 .

I) To Show
2→

Ta−2 ¤¤FT
1→
T F¤F ≤

3←
a− 7

2 .

Case1:
2→

Ta−2 ¤¤F
1→
T F¤TF ≤

3←
a− 7

2 .

Case 1.1: Ta−2¤¤F¤F ≤ a− 4. The left hand side is a− 4.

Case 1.2: Ta−3¤TF¤TF¤TF ≤ a− 7
2 . This is true by lemma 2.1.

Case 1.3:
2→

Ta−2 ¤F¤
1→
T F¤TF ≤ a− 3.
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Case 1.3.1: Ta−2F¤¤¤F ≤ a− 3. The left hand side is a− 3.

Case 1.3.2: a− 3 ≤ a− 3, by lemma 2.1.

Case 2: Ta−3¤TF¤TTF¤F ≤ a− 7
2 . The left hand side is a− 7

2 by lemma 2.2.

Case 3: Ta−2¤¤FTTFF¤ ≤ a− 3. The left hand side is a− 3.

II) To Show Ta−2¤¤
1←
F TTF¤

2←
F≥

3→
a− 7

2 .

Case1: Ta−3¤TF¤TTF¤F ≥ a− 7
2 . The left hand side is a− 7

2 by lemma 2.2.

Case 2: Ta−2¤¤F ≥ a− 3. The left hand side is a− 3.

Case 3: Ta−3¤T¤
1←
F TTF¤

2←
F ≥ a− 4.

Case 3.1: a− 4 ≥ a− 4, by lemma 2.2.

Case 3.2: Ta−3¤¤TF ≥ a− 4. The left hand side is a− 3.

We have lemma 2.3 here. Lemma 2.4 is similar to lemma 2.3. They are also at the

same level in the picture.

Lemma 5.4.4. Ta−3¤TTF¤TF¤F = a− 7
2 , a ≥ 5.

Need to show :

I) Ta−3¤TTF¤TF¤F ≤ a− 7
2 .
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II) Ta−3¤TTF¤TF¤F ≥ a− 7
2 .

I) To Show
3→

Ta−3 ¤T
2→
T F¤

1→
T F¤F ≤

4←
a− 7

2 .

Case1:
2→

Ta−3 ¤T
1→
T F¤F¤TF ≤

3←
a− 7

2 .

Case1.1: Ta−3¤TF¤TF¤TF ≤ a− 7
2 . This is true by lemma 2.1.

Case1.2: Ta−4¤TTTFF¤¤TF ≤ a− 7
2 . The left hand side is (a− 4)− 1.

Case1.3: Ta−3¤TTFF¤¤TF ≤ a− 3. The left hand side is (a− 3)− 1.

Case 2: Ta−3¤TF¤TTF¤F ≤ a− 7
2 . The left hand side is a− 7

2 by lemma 2.2.

Case 3: Ta−4¤TTTFFT¤¤F ≤ a− 7
2 . The left hand side is a− 4.

Case 4: Ta−3¤TTFFT¤¤F ≤ a− 3. The left hand side is a− 3.

II) To Show Ta−3¤TTF¤T
1←
F ¤

2←
F≥

3→
a− 7

2 .

Case1: Ta−3¤TTFFT¤¤F ≥ a− 3. The left hand side is a− 3 .

Case 2: Ta−3¤T¤FTTFF¤ ≥ a− 7
2 . The left hand side is {a− 3 | a− 3}.

Case 3: Ta−3¤T¤
1←
F TTF¤

2←
F≥ a− 4.

Case 3.1: a− 4 ≥ a− 4, by lemma 2.2.

Case 3.2: Ta−3¤¤TF ≥ a− 4. The left hand side is a− 3.
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Lemma 5.4.5. Ta−2¤TF¤T¤FF = a− 7
2 , a ≥ 5.

Need to show :

I) Ta−2¤TF¤T¤FF ≤ a− 7
2 .

II)) Ta−2¤TF¤T¤FF ≥ a− 7
2 .

I) To Show
3→

Ta−2 ¤
2→
T F¤

1→
T ¤FF ≤

4←
a− 7

2 .

Case1: Ta−2F
1→
T ¤¤¤TFF ≤

2←
a− 7

2 .

Case 1.1: Ta−2F¤T¤FT¤F ≤ a− 7
2 .

The left hand side goes to ⇒ Ta−1¤FT¤F = {1 | 1}.

Case 1.2: Ta−2F
2→
T ¤¤F

1→
T ¤F ≤ a− 3.

Case 1.2.1: Ta−2FT¤F¤¤TF ≤ a− 3.

The left most position will get block eventually.

Case 1.2.2: Ta−2F¤TF¤T¤F ≤ a− 3.

The left hand side goes to ⇒ Ta−1F¤T¤F ≤ a− 3.

The left hand side is {{{a− 3 | 2} | 1} || 0}.

Case 2: Ta−2¤¤FTTF¤F ≤ a− 7
2 . The left hand side is a− 7

2 by lemma 2.3.

Case 3: Ta−3¤TTF¤TF¤F ≤ a− 7
2 . The left hand side is a− 7

2 by lemma 2.4.
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Case 4:
3→

Ta−2 ¤
2→
T F¤

1→
T F¤F ≤ a− 3.

Case 4.1: Ta−2FT¤¤¤FTF ≤ a− 3.

⇒ Ta−2F¤T¤F¤TF ≤ a− 3.

⇒ Ta−1¤F¤TF ≤ a− 3., the left hand side is 1.

Case 4.2: Ta−2¤¤F ≤ a− 3. , the left hand side is a− 3.

Case 4.3: a− 3 ≤ a− 3. This is true by lemma 2.4.

II) To Show Ta−2¤T
1←
F ¤T¤

2←
F F ≥

3→
a− 7

2 .

Case1: Ta−2F¤T¤T¤
1←
F F ≥

2→
a− 7

2 .

Case1.1: Ta−2F¤¤TTF¤F ≥ a− 7
2 . The left hand side is ≥ (a− 2)− 1.

Case1.2: Ta−2¤¤TT¤FF ≥ a− 4. The left hand side is ≥ (a− 2)− 2.

Case2: Ta−2F¤¤FTTF¤F ≥ a− 7
2 . This is true by lemma 2.3.

Case 3: Ta−3¤TTF¤T¤
1←
F F ≥ a− 4.

⇒ a− 4 ≥ a− 4, by lemma 2.4.

Lemma 5.4.6. Ta−2¤TTF¤¤FF = a− 7
2 , a ≥ 5.

Need to show :
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I) Ta−2¤TTF¤¤FF ≤ a− 7
2 .

II) Ta−2¤TTF¤¤FF ≥ a− 7
2 .

I) To Show
2→

Ta−2 ¤T
1→
T F¤¤FF ≤

3←
a− 7

2 .

Case 1: Ta−2¤TF¤T¤FF ≤ a− 7
2 . This is true by lemma 2.5.

Case 2:
2→

Ta−3 ¤TT
1→
T F¤F¤F ≤

3←
a− 7

2 .

Case 2.1: Ta−3¤TTF¤TF¤F ≤ a− 7
2 . This is true by lemma 2.4.

Case 2.2: Ta−4¤TTTTFF¤¤F ≤ a− 7
2 . The left hand side is (a− 4)− 2.

Case 2.3: Ta−3¤TTTFF¤¤F ≤ a− 3. The left hand side is (a− 3)− 2.

Case 3:
2→

Ta−2 ¤T
1→
T F¤F¤F ≤ a− 3.

Case 3.1: Ta−2¤TF¤TF¤F ≤ a− 3. This is case I)4 of lemma 2.5.

Case 3.2: Ta−3¤TTTFF¤¤F ≤ a− 3. The left hand side is (a− 3)− 2.

II) To Show Ta−2¤TTF¤¤
1←
F F ≥

2→
a− 7

2 .

Case 1: Ta−2¤T¤
1←
F TF¤

2←
F≥

3→
a− 7

2 .

Case 1.1: Ta−3¤TTF¤TF¤F ≥ a− 7
2 . This is true by lemma 2.4.
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Case 1.2: Ta−2¤¤TFTFF¤ ≥ a− 7
2 .

The left hand side is ≥ Ta−2¤F¤ = a− 5
2 .

Case 1.3: Ta−2¤¤TFTF¤F ≥ a− 4.

The left hand side is ≥ Ta−2¤F¤− 1 = (a− 5
2)− 1.

Case 2: Ta−2¤T¤
1←
F T¤

2←
F F ≥ a− 4.

Case 2.1: a− 4 ≥ a− 4, by lemma 2.5.

Case 2.2: Ta−2¤¤TFTF¤F ≥ a− 4. This is the same as case 1.3 above.

Lemma 5.4.7. Ta−1¤T¤F¤FF = a− 7
2 , a ≥ 5.

Need to show :

I) Ta−1¤T¤F¤FF ≤ a− 7
2 .

II) Ta−1¤T¤F¤FF ≥ a− 7
2 .

I) To Show
2→

Ta−1 ¤
1→
T ¤F¤FF ≤

3←
a− 7

2 .

Case 1:
1→

Ta−1 ¤¤TFF¤F ≤
2←

a− 7
2 .

Case 1.1:
2→

Ta−2 ¤TF
1→
T ¤F¤F ≤

3←
a− 7

2 .

Case 1.1.1: Ta−2F
2→
T ¤¤

1→
T F¤F ≤

3←
a− 7

2 . (The left hand side is {1 | 1
2})

Case 1.1.1.1: Ta−2FT¤¤¤FTF ≤ a− 4.
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⇒ Ta−2F¤T¤F¤TF ≤ a− 4.

⇒ Ta−1¤F¤TF ≤ a− 4. The left hand side is 1.

Case 1.1.1.2: Ta−2F¤TFT¤¤F ≤ a− 7
2 .

⇒ Ta−1FT¤¤F ≤ a− 7
2 . The left hand side is 0.

Case 1.1.1.3: Ta−2FT¤FT¤¤F ≤ a− 3. The left hand side is ≤ 2.

Case 1.1.2: Ta−3¤TTFTF¤¤F ≤ a− 7
2 .

The left hand side is ≤ (a− 3) + ¤T¤F = (a− 3)− 1
2

Case 1.1.3: Ta−2F
2→
T ¤

1→
T ¤F¤F ≤ a− 3.

Case 1.1.3.1: Ta−2FT¤FT¤¤F ≤ a−3. This is the same as case 1.1.1.3 above.

Case 1.1.3.2: Ta−2F¤TTF¤¤F ≤ a− 3.

⇒ The left hand side is ≤ TaF¤¤F = {{1 | 1} || 0}.

Case 1.2:
2→

Ta−1 ¤F
1→
T ¤F¤F ≤ a− 3.

Case 1.2.1:
2→

Ta−1 ¤FF
1→
T ¤¤F ≤ a− 3.

Case 1.2.1.1:
2→

Ta−1 F¤F¤
1→
T ¤F ≤ a− 3.

Case 1.2.1.1.1: Ta−1FF¤¤¤TF ≤ a− 3. The left hand side is -2.
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Case 1.2.1.1.2: The left hand side goes to ⇒ Ta−1F¤T¤F ≤ a− 3.

The left hand side is {{{a− 3 | 2} | 1} || 0}.

Case 1.2.1.2: Ta−2F
2→
T ¤F

1→
T ¤¤F ≤ a− 3.

Case 1.2.1.2.1: Ta−2FTF¤¤T¤F ≤ a− 3.

⇒ ¤T¤T¤F = {1 | 1}.

Case 1.2.1.2.2: T¤T¤¤F ≤ a− 3. The left hand side is 2.

Case 1.2.2: Ta−2FT¤T¤F¤F ≤ a− 3. This is case 1.1.3 above.

Case 2: Ta−2¤TTF¤¤FF ≤ a− 7
2 . This is true by lemma 2.6.

Case 3:
2→

Ta−1 ¤
1→
T F¤¤FF ≤ a− 3.

Case 3.1:
2→

Ta−1 ¤F¤
1→
T ¤FF ≤ a− 3.

Case 3.1.1:
2→

Ta−1 ¤F¤F
1→
T ¤F ≤ a− 3.

Case 3.1.1.1: Ta−1F¤¤F¤TF ≤ a− 3.

⇒ Ta−1¤F¤TF = 1.

Case 3.1.1.2: Ta−2F
2→
T ¤¤F

1→
T ¤F ≤ a− 3.

Case 3.1.1.2.1: Ta−2FT¤F¤¤TF ≤ a− 3.
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The statement above is true since the left most part of the position gets

block eventually.

Case 3.1.1.2.2: Ta−2F¤TF¤T¤F ≤ a− 3.

The left hand side goes to ⇒ Ta−1F¤T¤F = {{a− 3 | 2} | 1} || 0}

Case 3.1.2: a− 3 ≤ a− 3, by lemma 2.5.

Case 3.2: a− 3 ≤ a− 3, by lemma 2.6.

II) To Show Ta−1¤T¤
1←
F ¤

2←
F F ≥

3→
a− 7

2 .

Case 1: Ta−2¤TTF¤¤FF ≥ a− 7
2 . This is true by lemma 2.6.

Case 2: Ta−2¤TT¤
1←
F F¤

2←
F≥

3→
a− 7

2 .

Case 2.1: Ta−2¤T¤FTF¤F ≥ a− 7
2 . This is II) case1 of lemma 2.6.

Case 2.2: Ta−2¤T¤T
1←
F FF¤ ≥

2→
a− 7

2 .

Case 2.2.1: Ta−3¤TTFT¤
1←
F F¤ ≥

2←
a− 7

2 .

Case 2.2.1.1: Ta−3¤TTF¤
1←
F TF¤ ≥

2←
a− 7

2 .

Case 2.2.1.1.1: Ta−3¤TTFF¤TF¤ ≥ a− 3.

The left hand side is (a− 3) + 0 = a− 3.

Case 2.2.1.1.2: Ta−3¤T¤
1←
F TFTF¤ ≥ a− 4.
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⇒ Ta−3¤¤FTTFTF¤ = a− 4.

The left hand side ≥ Ta−3¤¤F + FTF¤ = (a− 4) + 0 = a− 4.

Case 2.2.1.2: Ta−3¤TTF¤TFF¤ ≥ a− 4.

The left hand side ≥ Ta−3¤ + ¤TFF¤ = (a− 3) + 0 = a− 3.

Case 2.2.2: Ta−2¤¤TTFFF¤ ≥ a− 4. The left hand side is 2(a− 2).

Case 2.3: Ta−3¤TTT¤
1←
F F¤

2←
F≥ a− 4.

Case 2.3.1: Ta−3¤TT¤
1←
F TF¤

2←
F≥ a− 4.

Case 2.3.1.1: a− 4 ≥ a− 4, by case II 1.1 of lemma 2.6.

Case 2.3.1.2: Ta−3¤T¤TFTFF¤ ≥ a− 4.

The left hand side ⇒ Ta−3¤TF¤ = a− 3.

Case 2.3.2: Ta−3¤TT¤TFFF¤ ≥ a− 4. The left hand side ≥ a− 3.

Case 3: Ta−2¤TT¤
1←
F ¤

2←
F F ≥ a− 4.

Case 3.1: a− 4 ≥ a− 4, by lemma 2.6.

Case 3.2: Ta−3¤TTT¤FF¤F ≥ a− 4. This is true by the case 2.3

Theorem 5.4.1. Ta¤¤¤FFF = a− 7
2 , a ≥ 5.

Need to show :
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I) Ta¤¤¤FFF ≤ a− 7
2 .

II) Ta¤¤¤FFF ≥ a− 7
2 .

I) To Show
1→

Ta ¤¤¤FFF ≤
2←

a− 7
2 .

Case 1: Ta−1¤T¤F¤FF ≤ a− 7
2 . This is true by lemma 2.7.

Case 2: Ta¤¤F¤FF ≤ a− 3.

⇒ a− 3 ≤ a− 3, by lemma 2.7.

II) To Show Ta¤¤¤
1←
F FF ≥

2→
a− 7

2 .

Case 1: Ta−1¤T¤F¤FFF ≥ a− 7
2 . This is true by lemma 2.7.

Case 2: Ta−1¤T¤¤
1←
F FF ≥ a− 4.

⇒ a− 4 ≥ a− 4, by lemma 2.7.

The main theorem is proved. ¤

5.5 Ta¤¤Fb, a > b ≥ 2

We show Ta¤¤Fb = {{a− 3 | a− b} | {∗ | 3− b}}, a > b ≥ 2.

The position and value above was the first conjecture of Jeff Erickson in [4]. The

proof is not long but tricky. We will prove 11 lemmas before we get the main theorem.
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For the case a > b = 2 , the result is already in chapter 2 and chapter 3.

For the case a > b ≥ 3 ,We will prove 12 lemmas that will lead to the theorem.

Note: Ta¤¤F = a− 1, a ≥ 1. (this result will be used in the lemma).

Below is how the tree looks like at the beginning.

Ta−2¤TTF¤Fb−1 Ta−1¤¤FTFb−1 Ta−1¤TFF¤Fb−2Ta−1FT¤¤Fb−1

Ta−2¤T¤FTFb−1 Ta−1F¤T¤Fb−1 Ta−1FT¤F¤Fb−2

(continue on sub picture)

Ta−1¤F¤TFb−1

Ta−1¤TF¤Fb−1

Figure 5.3: Main tree

Ta−3¤TTTF¤Fb−1 Ta−2¤TTFF¤Fb−2Ta−2¤T¤FTFb−1

Ta−2¤TTF¤Fb−1

Ta−2¤TF¤TFb−1

Ta−2¤¤FTTFb−1 Ta−3¤TTF¤TFb−1

... ...

... ...

(a− b)

(a− 3)

Figure 5.4: Sub picture of the main tree
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Lemma 5.5.1. Ta¤ TkF¤TFb = a, k ≥ 2, a ≥ 0, b ≥ 0.

Proof by induction on a:

Base case: a = 0, ¤ TkF¤TFb = 0. The statement is true by Death Leap Principle.

The induction step:

= {a | a} if k = 2.

Ta−1¤Tk+1F¤TFb

= a− 1 ; by induction.

a + T¤Fb−1

= Null , if b = 0.

or = {0 | {−1 | 3− b}}+ a , if b ≥ 2.

or = {{2a + k − 3 | a + 1} || a} if k ≥ 3. or = a + 1 , if b = 1.

Ta¤Tk−1¤F

Ta¤TkF¤TFb

Figure 5.5: Ta¤ TkF¤TFb = a.

Lemma 5.5.2. Ta¤Tk¤FTFb ≥ a− 1, k ≥ 1, a ≥ 1, b ≥ 0.

Proof by induction on a:

Base case: a = 1, T¤Tk¤FTFb ≥ 0.

⇒ ¤Tk+1F¤TFb ≥ 0. The statement is true by Death Leap Principle.

Induction step:

Ta¤Tk¤
1←
F TFb ≥

2→
a− 1 .

Case 1: a− 1 ≥ a− 1 , by lemma 3.1.
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Case 2: Ta−1¤Tk+1¤FTFb ≥ a− 2, true by induction.

Lemma 5.5.3.
2→

Ta F¤TiFj
1→
T ¤Fb ≤

3←
{0 | 0}, i ≥ 1, j ≥ 1, a ≥ 0, b ≥ 1.

Proof by induction on a: (I will omit the base case since it is the same as the in-

duction step except no case 2).

Case1: TaF¤TiFj¤TFb ≤ 0, true by one side DLP.

Case2: Ta−1F¤Ti+1FjT¤Fb ≤ {0 | 0}, true by induction.

Case3: TaF¤TiFjTF¤Fb−1 ≤ 0 , true by one side DLP.

Lemma 5.5.4. TaF
2→
T ¤Fk

1→
T ¤Fb ≤ 0, k ≥ 1, a ≥ 0, b ≥ 2.

Case1: TaF
2→
T ¤Fk+1

1→
T ¤Fb−1 ≤ 0

Case1.1: TaFTF¤Fk¤TFb−1 ≤ 0, true by one side DLP.

Case1.2: TaF¤TFk+1TF¤Fb−2 ≤ 0, true by one side DLP.

Case2: TaF¤TFkTF¤Fb−1 ≤ 0, true by one side DLP.

Lemma 5.5.5. TaF
1→
T ¤Fk¤TFb ≤

2←
{0 | 0}, k ≥ 0, a ≥ 0, b ≥ 3.

Case1: TaF¤TFk+1T¤Fb−1 ≤ {0 | 0}, true by lemma 3.3.

Case2: TaFT¤Fk+1T¤Fb−1 ≤ 0, true by lemma 3.4.

Lemma 5.5.6.
2→

Ta ¤
1→
T F¤TFb ≤ Ta¤TTF¤

3←
Fb, a ≥ b ≥ 2.
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(For bypass reversible move in the future)

Case1: Ta¤¤F ≤ Ta¤T¤FTFb

⇒ a− 1 ≤ Ta¤T¤FTFb since Ta¤¤F = a− 1, by note. True by lemma 3.2.

Case2: Ta−1¤TTF¤TFb ≤ Ta¤T¤FTFb.

The left hand side is a− 1 by lemma 3.1.

Then the statement is true by lemma 3.2.

Case3: TaFT¤¤TFb ≤ a− b + 1

⇒ TaF¤TFT¤Fb−1 ≤ a− b + 1, true by lemma 3.3.

Lemma 5.5.7.
2→

Ta ¤TT
1→
T F¤Fb ≤ a, a ≥ 0, b ≥ 1.

Case 1: Ta¤TTF¤TFb ≤ a , true by lemma 3.1.

Case 2: Ta−1¤TTTTFF¤Fb−1 ≤ a. The left hand side is a− b.

Lemma 5.5.8.
2→

Ta−1 ¤
1→
T F¤TFb ≤ Ta¤¤

3←
F TFb, a ≥ 2, b ≥ 0.

(For bypass reversible move in the future)

Case 1: a− 2 ≤ Ta−1¤T¤FTFb, true by lemma 3.2.

Case 2: Ta−2¤TTF¤TFb ≤ Ta−1¤T¤FTFb, (the left hand side = a − 2, by lemma

3.1), true by lemma 3.2.

Case 3: Ta−1¤TF¤TFb ≤ Ta−1¤TF¤TFb.

Lemma 5.5.9. Ta¤F¤TFb ≤ 1, a ≥ 2, b ≥ 2.
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⇒ Ta−1FT¤¤TFb ≤ 1.

⇒ Ta−1F¤TFT¤Fb−1 ≤ 1, true by lemma 3.3.

Lemma 5.5.10. TaF¤Tk¤Fb = {0 | 0}, k ≥ 1, a ≥ 3, b ≥ 2.

Need to show:

I) TaF¤Tk¤Fb ≤ {0 | 0}, k ≥ 1, a ≥ 0, b ≥ 2.

II) TaF¤Tk¤Fb ≥ {0 | 0}, k ≥ 1, a ≥ 3, b ≥ 1.

I) To show
2→

Ta F¤
1→

Tk ¤Fb ≤
3←

{0 | 0}, k ≥ 1, a ≥ 0, b ≥ 2.

Prove by induction on a: (I will omit the base case since it is the same as the

induction step except no case 2).

Induction step:

Case 1: TaF¤Tk−1FT¤Fb−1 ≤ {0 | 0}, true by lemma 3.3.

Case 2: Ta−1F¤Tk+1¤Fb ≤ {0 | 0}, true by induction.

Case 3: TaF¤TkF¤Fb−1 ≤ 0, true by one side DLP.

II) To show TaF¤Tk¤
1←

Fb≥
2→

{0 | 0}, k ≥ 1, a ≥ 3, b ≥ 1.

Case 1: TaF¤Tk−1¤FTFb−1 ≥ {0 | 0} , true by negative of lemma 3.5.
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Case 2: Ta−1¤
2←
F Tk+1¤

1←
Fb≥ 0.

Case 2.1: Ta−1F¤Tk¤TFb ≥ 0, true by one side DLP.

Case 2.2: Ta−1¤FTk¤FTFb−1 ≥ 0, true by negative of lemma 3.4.

Lemma 5.5.11.
1→

{∗ | 1− b} ≤ Ta¤T
2←
F F¤

3←
Fb, b ≥ 1, a ≥ b + 2.

Case 1: ∗ ≤ a− b− 1.

Case 2:
1→

{∗ | 1− b}≤ TaF¤T
2←
F ¤

3←
Fb.

Case 2.1: ∗ ≤ TaF¤¤FTFb, true by the negative of lemma 3.5.

Case 2.2: 1− b ≤ T¤¤Fb. The right hand side is 1− b, by note.

Case 2.3: 1− b ≤ TaF¤TFF¤Fb−1, true by the negative of lemma 3.1.

Case 3: {∗ | 1− b} ≤ a− b.

⇒ 0 ≤ a− b, which is true.

After applying lemma 1,6,7,8,9,10,11 to the tree, it looks like:
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Ta−3¤TF¤TF¤TF = a− 7
2

a− 4 a− 4 a− 4

Ta−4¤TTFFT¤¤TF
Ta−3¤¤FTTFFT¤

(a− 4) + 1 = a− 3

Ta−3FT¤¤¤FTTF

{a− 3 | a− 3}
(a− 4) + 1 = a− 3

Figure 5.6: Tree after applying lemma 1,6,7,8,9,10,11

After applying these lemmas, we have

Ta−1¤TF¤Fb−1 = {{a− 3 | a− b} | {∗ | 3− b}}.

We finally the main theorem using the result above.

Theorem 5.5.1. Ta¤¤Fb = {{a− 3 | a− b} | {∗ | 3− b}}, a > b ≥ 3.

Need to show:

I) Ta¤¤Fb ≥ {{a− 3 | a− b} | {∗ | 3− b}}, a > b ≥ 3.

II) Ta¤¤Fb ≤ {{a− 3 | a− b} | {∗ | 3− b}}, a > b ≥ 3.

I) To show Ta¤¤
1←

Fb ≥
2→

{{a− 3 | a− b} | {∗ | 3− b}}, a > b ≥ 3.

Case 1: Ta−1¤TF¤Fb−1 ≥ {{a− 3 | a− b} | {∗ | 3− b}}, true by the tree above.

Case 2: Ta−1¤T¤
1←

Fb ≥
2→

{a− 3 | a− b}.
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Case 2.1: {a− 3 | a− b} ≥ {a− 3 | a− b}, by the tree above.

Case 2.2: Ta−2¤TT¤Fb ≥ a− 3.

We will prove case 2.2 in the more general cases.

Ta−2¤Tk¤Fb ≥ a− 3, k ≥ 2, a ≥ 3, by induction on a.

Base Case: a = 3, To show T¤Tk¤Fb ≥ 0.

⇒ T¤Tk−1¤FTFb−1 ≥ 0, true by lemma 3.2.

Induction step: Ta−2¤Tk¤
1←

Fb ≥
2→

a− 3 .

Case1: Ta−2¤Tk−1¤FTFb−1 ≥ a− 3, true by lemma 3.2.

Case2: Ta−3¤Tk+1¤Fb ≥ a− 4, true by induction.

II) To show
1→

Ta ¤¤Fb ≤
2←

{{a− 3 | a− b} | {∗ | 3− b}}, a > b ≥ 3.

Case 1: Ta−1¤TF¤Fb−1 ≤ {{a− 3 | a− b} | {∗ | 3− b}}, true by the tree above.

Case 2:
1→

Ta ¤F¤Fb−1 ≤ {∗ |
2←

3− b}.

Case 2.1: {∗ | 3− b} ≤ {∗ | 3− b}, by lemma 3.11.

Case 2.2: Ta¤FF¤Fb−2 ≤ 3− b. This is the negative of case I) 2.2 above.

The theorem is proved. ¤
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5.6 Ta¤¤¤Fb, a ≥ 4, b ≥ 4

We show Ta¤¤¤Fb = {a− b | a− b}, a ≥ 4, b ≥ 4.

The values of the starting positions are of a great interest. Some of them have

been investigated in Erickson’s paper [4]. The starting position with the variables

on both Toads and Frogs are interested the author a lot. We showed the value of

Ta¤¤Fb, a > b ≥ 2 in the previous section. In this section we show the value of

Ta¤¤¤Tb, a ≥ 4, b ≥ 4. It is still an open problem about the values of the position

Ta¤¤¤¤Tb, a ≥ 6, b ≥ 6 and Ta¤¤¤¤¤Tb.

We will do the case analysis similar to the one in the previous two sections. The

proof here is not long. The outline is below.

Ta¤¤¤Fb = {a− b | a− b}.

Ta−1¤T¤F¤Fb−1 = {a− b | a− b}.

Ta−3¤TTT¤FFF¤Fb−3 = {a− b | a− b}.

Ta−2¤TT¤FF¤Fb−2 = {a− b | a− b}.

Figure 5.7: Ta¤¤¤Fb = {a− b | a− b}



90

Lemma 5.6.1. Ta−3¤T3¤F3¤Fb−3 = {a− b | a− b}, a ≥ 4, b ≥ 4.

By symmetry, we only need to show
2→

Ta−3 ¤
1→

T3 ¤F3¤Fb−3 ≤
3←

{a− b | a− b}.

Case 1:
2→

Ta−3 ¤TTF
1→
T ¤FF¤Fb−3 ≤

3←
{a− b | a− b}.

Case 1.1: Ta−3¤TTF¤TFF¤Fb−3 ≤ a− b , true by one side DLP.

Case 1.2: Ta−4¤TTTFT¤FF¤Fb−3 ≤ a− b , true by one side DLP.

Case 1.3: Ta−3¤TTFTF¤F¤Fb−3 ≤ a− b .

⇒ Ta−3¤TTFF¤TF¤Fb−3 ≤ a− b.

The left hand side is (a− 3)− (b− 3) = a− b.

Case 2:
2→

Ta−4 ¤TTT
1→
T ¤FFF¤Fb−3 ≤ a− b.

Case 2.1: Ta−4¤TTTFT¤FF¤Fb−3 ≤ a− b . This is case 1.2.

Case 2.2: Ta−5¤TTTTTF¤FF¤Fb−3 ≤ a− b.

The left hand side is ≤ (a− 5)− (b− 3) = a− b− 2.

Case 3: Ta−3¤TTTF¤FF¤Fb−3 ≤ a− b. The left hand side is ≤ a− b.

Lemma 5.6.2. Ta−2¤T2¤F2¤Fb−2 = {a− b | a− b}, a ≥ 4, b ≥ 4.

By symmetry, we only need To show
2→

Ta−2 ¤
1→

T2 ¤F2¤Fb−2 ≤
3←

{a− b | a− b}.

Case 1:
2→

Ta−2 ¤TF
1→
T ¤F¤Fb−2 ≤

3←
{a− b | a− b}.
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Case 1.1: Ta−2¤TFFT¤¤Fb−2 ≤ {a− b | a− b}.

Left has to move the left most T. Since otherwise right will move the left most F and

block the left most position. So we have

⇒ Ta−3¤TTFFT¤¤Fb−2 ≤ a− b. The left hand side is (a− 3)− (b− 3) = a− b.

Case 1.2: Ta−3¤TTFT¤FF¤Fb−2 ≤ {a− b | a− b} . This is case 1 in lemma 4.1.

Case 1.3:
2→

Ta−2 ¤TF
1→
T ¤FF¤Fb−3 ≤ a− b .

Case 1.3.1: Ta−2¤TFFT¤F¤Fb−3 ≤ a− b .

Left has to move the left most T. Since otherwise right will move the left most F and

block the left most position. So we have

⇒ Ta−3¤TTFFTF¤¤Fb−3 ≤ a− b. The left hand side is (a− 3)− (b− 3) = a− b.

Case 1.3.2: Ta−3¤TTFTF¤F¤Fb−3 ≤ a− b .

⇒ Ta−3¤TTFF¤TF¤Fb−3 ≤ a− b.

The left hand side is (a− 3)− (b− 3) = a− b .

Case 2: Ta−3¤TTT¤FFF¤Fb−3 ≤ {a− b | a− b}, true by lemma 4.1.

Case 3:
2→

Ta−2 ¤T
1→
T ¤FFF¤Fb−3 ≤ a− b.

Case 3.1: Ta−2¤TFT¤FF¤Fb−3 ≤ a− b. This is case 1.3 above.

Case 3.2: a− b ≤ a− b , by lemma 4.1.
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Lemma 5.6.3. Ta−1¤T¤F¤Fb−1 = {a− b | a− b}, a ≥ 4, b ≥ 4.

By symmetry, we only need To show
2→

Ta−1 ¤
1→
T ¤F¤Fb−1 ≤

3←
{a− b | a− b}.

Case 1:
1→

Ta−1 ¤¤TFF¤Fb−2 ≤
2←

{a− b | a− b}.

Case 1.1: Ta−2¤TFT¤F¤Fb−2 ≤ {a− b | a− b}. This case 1 of lemma 4.2.

Case 1.2: Ta−1¤¤TFFF¤Fb−3 ≤ a− b.

⇒ Ta−2¤TFT¤FF¤Fb−3 ≤ a− b . This is case 1.3 of lemma 4.2.

Case 2: Ta−2¤TT¤FF¤Fb−2 ≤ {a− b | a− b} , true by lemma 4.2.

Case 3:
2→

Ta−1 ¤
1→
T ¤FF¤Fb−2 ≤ a− b.

Case 3.1: Ta−1¤¤TFFF¤Fb−3 ≤ a− b. This is case 1.2 above.

Case 3.2: a− b ≤ a− b , by lemma 4.2.

Theorem 5.6.1. Ta¤¤¤Fb = {a− b | a− b}, a ≥ 4, b ≥ 4.

By symmetry, we only need To show
1→

Ta ¤¤¤Fb ≤
2←

{a− b | a− b}.

Case 1: Ta−1¤T¤F¤Fb−1 ≤ {a− b | a− b}, true by lemma 4.3.

Case 2: Ta¤¤F¤Fb−1 ≤ a− b.

⇒ a− b ≤ a− b , by lemma 4.3.
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The theorem is proved. ¤
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Chapter 6

How to beat Capablanca

6.1 Introduction

The first thing Capablanca mentions in his book, Chess Fundamentals, is how to check-

mate with rook, as in Figure 6.1.

Figure 6.1: Starting position.

Capablanca writes,

In this position the power of the rook is demonstrated by the first move,

Ra7, which immediately confines the black king to the last rank, ...

Capablanca did not give the fastest way to checkmate. With 1.Ra7, the fastest way

for White to checkmate Black king is 10 moves. While with 1.Rg1, White can force a
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checkmate in 9 moves.

6.2 On an m× n board.

For the general m × n board with White king (WK) on (m, 1) , White rook (WR) on

(1,1), and Black king (BK) on (m, n) where m ≥ 4 and n ≥ 5, we define FM(m,n) to

be the smallest number of moves for white to checkmate Black king.

Theorem. FM(m,n) =





n if n is odd;

n + 1 if n is even.

Let’s call the right side G(m, n). We will prove this by

1) Showing a sequence of White moves that force the checkmate in G(m,n) moves.

2) Showing that Black has a strategy to survive up to G(m, n)− 1 moves.

Lemma 1. In the given postion on an m× n board, White can give a checkmate in n

moves if n is odd.

I will give the sequence of white moves so that for all the choices of Black moves, white

can give the checkmate in n moves.

First move: 1.WR(m-1,1) BK(m,n-1) (only move)

Then White can make a sequence of White king moves up one square no matter what

Black responds are. Black’s only responds are moving the king up and down along the

mthcolumn. But this can not interrupt White king because of the parity. It will take

n − 4 moves for white king to move up to the square (m,n − 3). We have Figure 6.2

below with White to move.

White can finish this off by playing the forcing move
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Figure 6.2: Position before checkmate.

1. WK(m-1,n-2) BK(m-1,n) (only move)

2. WR(m-2,1) BK(m,n) (only move)

3. WR(m-2,n) Checkmate

The total number of moves is 1 + (n− 4) + 3 = n.

Lemma 2. White can force a checkmate in n + 1 moves, if n is even.

The strategy is almost the same as in Lemma 1. However, because of the parity we

have to make one waiting move, i.e.,WR(m-1,2) while White king tries to move upward.

Since n ≥ 5, we have enough room for this plan.

Note: The first move WR(m-1,1) with the strategy above gives White the fastest way

to mate. As we can see it requires at least n − 3 (resp. n − 2 moves) for n odd (resp.

even) for White King to move up the board and at least 2 more Rook moves before

White can force a checkmate.

Lemma 3. Black has a strategy to survive up to n− 1 moves, if n is odd.
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The general plan for Black to survive is to move to the middle of the board as much as

possible. At some point White has to move his Rook to restrict the possible moves of

Black king. Then he must use White king to push Black king to the edge of the board.

In addition, the sooner the Rook moves, the better. Therefore we will assume the first

move is a Rook move. Note that the only mating positions are when Black king is at

the edge of the board. Now we consider 2 cases of the first Rook move:

Case 1 The first rook move is vertical (moving along a column).

In this case, Black tries to move to the middle of the board as much as possible. Once

Black king gets there, he will try to stay there as long as possible before he is forced to

the corner. Below is an example where the size of the board is 9× 9.

1. WR(1,8) BK(8,9)

2. WK(8,2) BK(7,9)

3. WK(7,3) BK(6,9)

4. WK(6,4) BK(5,9)

5. WK(5,5) BK(6,9)

6. WK(5,6) BK(5,9)

7. WK(4,7) BK(6,9)

8. WK(5,7) BK(7,9)

9. WK(6,7) BK(8,9)

10.WK(7,7) BK(9,9)

11.WK(8,7) BK(8,9)

12.WR(1,9) Checkmate

On m × n board, we can see that White has to move his Rook twice, and White

king moves up the board in n − 3 moves and chases Black king back to the cor-

ner with at least another d(m
2 )e − 1 moves. For example on a 9 × 9 board, it takes

2 + (9 − 3) + (5 − 1) = 12 moves. This is the best that White can do. Therefore
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Figure 6.3: Intermediate position.

F (m,n) = 2 + (n− 3) + (d(m
2 )e − 1) ≥ n moves (since m ≥ 4 ).

Case 2 The first Rook move is horizontal (moving along a row).

(We exclude the move R(m− 1, 1) since we already know that in that case the fastest

number of moves to mate is n.)

Black king will try to move down and toward the middle of the board as much as pos-

sible. Once he gets blocked by the rook and the White king, Black king moves along

the row (otherwise Black King will just try to stay in the middle of the board). He

could move along the row since the Rook is not at column m− 1. Figure 3 illustrates

the situation:

1. ... BK(9,6) Now white has two choices: 2.WK(7,5) or 2.WR(7,6). For 2.WK(7,5),

Black’s response will be BK(8,7) and the best white response is 3.WK(8,5). In this

case, White King needs one extra move to get to the row n− 3.
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Overall, White has to move the rook twice (the first rook move and the checkmate

move); the king takes n− 3 moves to go up the board and at least an extra move from

king or rook of the two choices above. This makes the least possible number of moves

to checkmate at least ≥ 2 + (n− 3) + 1 = n.

Lemma 4. Black has a strategy to survive up to n moves, when n is even.

The general plan in this case is similar. The strategy in Case 1 also works here. In Case

2, Black now has an advantage of parity. This will give him an extra move to survive

when he faces White king in the middle of the board. The details of the proof are left

as an exercise to the reader.

By Lemmas 1, 2, 3 and 4, we conclude the theorem.

The induction method using to solve the above position could be later on generalized

to more complicated starting postion with different pieces on the board.

6.3 About José Raul Capablanca

Jose Raul Capablanca was born in Havana, Cuba on November 19, 1888. He is regarded

as one of the most gifted chess players of all time. According to Capablanca, at the age

of four, he learned the rules of chess by watching his father play chess with a friend. In

1921, he won the world champion title from mathematician and chess player Emanuel

Lasker, who held the title for 27 years. Capablanca was the third official world chess

champion. He lost his title to Alexander Alekhine in 1927 and died in 1942.

The move that Capablanca suggested is Case 1 of Lemma 4. Black could survive at

least 2 + (n− 3) + (d(m
2 )e − 1) = 2 + 5 + 3 = 10.
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Chapter 7

On the Monochromatic Schur Triples problem

7.1 Introduction

The Schur number, s(r) , denotes the maximal integer n such that there exists an r-

coloring of [1, n − 1] that avoids a monochromatic solution to x + y = z. For example

s(2) = 5 and s(3) = 14. s(5) is unknown but is conjectured to be 161.

The original question about the minimum number, over all 2-colorings of [1, n], of

monochromatic Schur triples was asked by Ronald Graham in 1997. It can be thought

of as a larger-scale version of the problem asked by the Schur numbers. It was solved in

1998. The answer is n2

22 +O(n), that is realized by coloring the first 4n
11 integers red, the

next 6n
11 integers blue, and the final n

11 integers red. The first two solutions were given by

Robertson and Zeilberger [9] and Schoen [10]. Later Datskovsky [3] found another proof.

Ronald Graham asked another question generalizing the original one. The question

was about the minimum number of monochromatic (x, y, x+ay) triples, a ≥ 2 on [1, n].

We discuss this problem in this chapter.

In section 2, we give a new simple proof of the original problem of finding the min-

imum number, over all 2-colorings of [1, n], of monochromatic Schur triples. In section

3, we talk about the generalized problem asked by Graham. For this problem, we wrote

a computer program to find an optimal coloring for small n to see some patterns. T

hen we used a newly found “greedy calculus” to obtain a “good” upper bound. The

final step was to try to match the lower bound and upper bound of the problem. In
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section 4, we also apply the greedy calculus to the original question on Schur triples

with r ≥ 3, to obtain a new upper bound.

7.2 The minimum number, over all 2-colorings of [1, n], of monochro-

matic Schur triples

7.2.1 A Greedy Algorithm for The Upper bound

It is natural to find examples of good colorings first. This example will give us an upper

bound. Then we try to show that this upper bound is also a lower bound.

We will show how to find an upper bound for the minimum number, over all 2-

colorings of [1, n], of monochromatic triples that are solutions of x + y = z. We will

obtain this upper bound by using the Greedy Algorithm. We denote the colors red and

blue.

The general idea is to keep adding more new intervals with different colors so that,

each time, the overall coloring has the least number of monochromatic triples. For

other proofs of this original problem see [9], [3], [10].

First

We paint the first interval of length k red. We will have k2

4 + O(k) monochromatic

triples solution of x + y = z.

Second

We paint the second interval blue. We want to find the length of the interval (with this

color) so that the overall number of the monochromatic triples is minimized.
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Let the length of this interval be (1 + j)k (here j is the number we want to find).

The total number of monochromatic triples on the whole interval is now k2

4 + j2k2

4 =
(1+j2)k2

4 .

The total length is N = k + (1 + j)k = (2 + j)k.

So the total number of monochromatic triples in terms of N is
(1+j2)( N

2+j
)2

4 = (1+j2)
(2+j)2

N2

4 .

To find the minimum, we use calculus to get j = 1
2 . The total number of monochro-

matic Schur triples is then N2

20 + O(n).

So far so good. We have a coloring that paints the first k integers red, followed by

painting the next (1 + 1
2)k integers blue.

Third

Now we try to stick red at the end of the interval, and try to lower the overall number

of triples. Say the length of this interval is jk, where j is the number we want to find.

The total number of monochromatic Schur triples on the whole interval is k2

4 + k2

16 +

j2k2

2 = ( 5
16 + j2

2 )k2 .

The total length is N = k + (1 + 1
2)k + jk = (5

2 + j)k.

So the total number of monochromatic Schur triples in term of N is

( 5
16 + j2

2 ) N2

( 5
2
+j)2

= 5+8j2

(5+2j)2
N2

4 .

To find the minimum, we again use calculus and get j = 1
4 . The total number of

monochromatic triples is N2

22 + O(n). The coloring for the whole interval is a red in-

terval of length equal to k, a blue interval of length equal to (1 + 1
2)k and another

red interval of length equal to 1
4k. k is such that the sum of these intervals is N , i.e.

k = N
( 5
2
+ 1

4
)

= 4N
11 .
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Fourth

We try to lower the bound further by having a blue interval of length, say, jk at the

end of the previous interval. But now we get that the minimizing j is negative. So we

stop.

As a conclusion, the optimal coloring is proportional to [1, 3
2 , 1

4 ], with colors [R, B, R]

yielding that indeed the minimal number is N2

22 + O(n).

7.2.2 The Lower Bound

Finding lower bound is, in general, the difficult part. However, in this case, it is possible

since we can turn the problem into a calculus problem. A similar technique was used

in [8]

Definition

Let Mχ(n) be the number of monochromatic Schur triples for a 2-coloring χ of [1, n].

Let Q be two times the number of non-monochromatic Schur triples for a 2-coloring of

[1, n].

Divide the interval [1, n] into k consecutive intervals.

Let ri be the number of red points in the interval Ii.

Let bi be the number of blue points in the interval Ii.

Let Si,j be the number of non-monochromatic pairs in the square of Ii × Ij .

Let Ti,j be the number of non-monochromatic pairs in the triangle of Ii × Ij .

Note: ri + bi = n
k .

Lemma 1) Mχ(n) = n2

4 − Q
2 + O(n).
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The total number of triples = |monochromatic triples|+ |non-monochromatic triples|
= Mχ(n) + Q

2 .

Since the total number of triples is n2

4 + O(n), we have Mχ(n) = n2

4 − Q
2 + O(n). ¤

The plan is to find an upper bound of Q that will give the lower bound of Mχ(n).

Lemma 2) Q = |R| |B|+ 1
2(

∑
i+j<k Si,j +

∑
i=1..k Ti,k−i+1),

where |R| = ∑
i=1..k ri and |B| = ∑

i=1..k bi.

Q = |{(R, B), (B,R)| y − x ≥ 0}|+ |{(R, B), (B,R)| x + y ≤ n, x ≥ y}| .
= |{(R, B), (B,R)| y − x ≥ 0}|+ 1

2 |{(R, B), (B,R)| x + y ≤ n}| .

Note that each non-monochromatic triple contributes two non-monochromatic pairs:

for example, (x, y, z) = (R, B, R) gives (x, y) = (R, B) and (y, z) = (B,R). The state-

ment of the lemma follows. ¤.

Now we find an upper bound for Q.

For each Ti,j we have two ways to bound it:

1) Ti,j ≤ area of the triangle = 1
2(n

k )2.

2) Ti,j ≤ Si,j .

Example 1: k = 2, with the upper bound of T1,2, T2,1 using the areas of the triangles.

We have

Q = |R| |B|+ 1
2(S1,1 + T1,2 + T2,1).

≤ (r1 + r2)(b1 + b2) + r1b1 + n2

8 .

= (r1 + r2)(n− r1 − r2) + r1(n
2 − r1) + n2

8 .

We use calculus to find a maximum of Q where 0 ≤ r1, r2 ≤ n
2 . The optimal solutions

is r1 = n
4 and r2 = n

4 .
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We then get the maximum Q as 7n2

16 . This yields Mχ(n) ≥ n2

32 + O(n).¤

Example 2: k = 3, with the upper bound of T1,3, T3,1 using the areas of the triangles.

The upper bound of T2,2 using S2,2. We have

Q = |R| |B|+ 1
2(S1,1 + S1,2 + S2,1 + T1,3 + T2,2 + T3,1).

≤ (r1 + r2 + r3)(b1 + b2 + b3) + r1b1 + r1b2 + r2b1 + r2b2 + n2

18 .

We use calculus to find a maximum of Q where 0 ≤ r1, r2, r3 ≤ n
3 . One of the optimal

solution is r1 = 0, r2 = n
3 and r3 = n

6 .

This yields the maximum Q is 5n2

12 which leads to Mχ(n) ≥ n2

24 + O(n).¤

This is pretty nice. We can use calculus to get a decent lower bound of the problem. The

calculation can even be done by hand. The hope to match the upper bound and lower

bound is to try 11 intervals. This time we need a computer to help doing the calculation.

Example 3: k = 11,

We bound T2,10, T3,9, T4,8, T8,4, T9,3 and T10,2 by the area of each triangle which is n2

242 .

We bound Ti,12−i by Si,12−i ,where i = 1, 5, 6, 7, 11.

We get eight optimal solutions to the maximum of Q. One of them is

[r1, r2, ..., r11] = [ n
11 , n

11 , n
11 , n

11 , 0, 0, 0, 0, 0, 0, n
11 ].

This yields the maximum of Q as 9n2

22 which gives Mχ(n) ≥ n2

22 + O(n). ¤

YAY!! Since the lower bound matches the upper bound, the problem is solved.
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7.3 Generalized problem, x + ay = z, a ≥ 2

7.3.1 A Greedy Algorithm for Upper bounds

We will show how to find an upper bound for the minimum number, over all 2-colorings

of [1, n], of monochromatic triples that are solutions of x + ay = z, for a fixed in-

teger a ≥ 2. We will obtain this upper bound by using the Greedy Algorithm. The

general idea is the same as in the previous section. We again call the colors red and blue.

First

We paint the first interval of length k red. We will have k2

2a monochromatic triples as

solutions of x + ay = z.

Second

We paint the second interval blue. We want to find the length of the interval (with this

color) so that the overall number of monochromatic triples is minimum.

Let the length of this interval be (a + j)k (here j is the number we want to find).

The total number of monochromatic triples on the whole interval is now k2

2a + j2k2

2a =
(1+j2)k2

2a .

The total length is N = k + (a + j)k = (1 + a + j)k.

So the total number of monochromatic triples in terms of N is
(1+j2)( N

1+a+j
)2

2a = (1+j2)
(1+a+j)2

N2

2a .

To find the minimum, we use calculus to get j = 1
a+1 . The total number of monochro-

matic Schur triples is then N2

2a(a2+2a+2)
.

So far so good. We have a coloring that paints the first k integers red, followed by
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painting the next (a + 1
a+1)k integers blue.

Third

Now we try to stick red at the end of the interval, and try to lower the overall number

of triples. Say the length of this interval is jk, where j is the number we want to find.

The total number of monochromatic Schur triples on the whole interval is k2

2a + k2

2a(a+1)2
+

j2k2

2a = ((a+1)2+1+(a+1)2j2)k2

2a(a+1)2
.

The total length is N = k + (a + 1
a+1)k + jk = (1 + a + 1

a+1 + j)k.

So the total number of monochromatic Schur triples in term of N is
((a+1)2+1+(a+1)2j2)

2a(a+1)2
( N
(1+a+ 1

a+1
+j)

)2 = ((a+1)2+1+(a+1)2j2)N2

2a((a+1)2+1+(a+1)j)2
.

To find the minimum, we again use calculus to get j = 1
a+1 . The total number of

monochromatic triples is N2

2a(a2+2a+3)
. The coloring for the whole interval is a red in-

terval of length equal to k, a blue interval of length equal to (a + 1
a+1)k and another

red interval of length equal to 1
a+1k. k is such that the sum of these intervals is N , i.e.

k = N
(1+a+ 2

a+1
)
.

Fourth

We try to lower the bound even further by having a blue interval of length, say, jk at

the end of the previous interval. But now we get that the minimizing j is negative. So

we stop.

As a conclusion, the optimal coloring is proportional to [1, a + 1
a+1 , 1

a+1 ], with colors

[R, B, R] yielding that indeed the minimal number is N2

2a(a2+2a+3)
.



108

7.3.2 Lower bounds

We will use a similar technique for the lower bound of the original problem. We find

an upper bound for non-monochromatic triples in [1, n]. This gives a lower bound of

the monochromatic triples.

We use the notation (R,B) and (B,R) for the non-monochromatic pair (x, y).

Definition:

Let |R| be the number of red points in [1, n].

Let |B| be the number of blue points in [1, n].

Lemma 1) |{(R, B), (B,R)| y > x, y − x is divisible by a}| ≤ |R||B|
a .

Proof:

Let |ri| = number of red points at position m in [1, n] where m ≡ i mod a.

Let |bi| = number of blue points at position m in [1, n] where m ≡ i mod a.

We remark ri + bi = n
a , 1 ≤ i ≤ a and

∑a
i=1 ri = |R|.

|{(R,B), (B, R)| y > x, y − x is divisible by a}| − |R||B|
a

=
∑a

i=1 ribi − |R||B|
a

=
∑a

i=1 ri(n
a − ri)− (

∑a
i=1 ri)(n−

∑a
i=1 ri)

a

= −∑a
i=1 r2

i + (
∑a

i=1 ri)
2

a

≤ 0 , by the Cauchy-Schwarz inequality.

Moreover, equality holds when r1 = r2 = ... = ra. ¤

Let Qa be two times the number of non-monochromatic triples of solutions of x+ay = z
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in a 2-coloring of [1, n].

Lemma 2) Qa ≤ |R||B|
a +|{(R, B), (B,R)| y − ax ≥ 0}|+|{(R,B), (B, R)| y + ax ≤ n}| .

Proof:

Qa = |{the non-monochromatic pair (x, y)|
y > x and y − x is divisible by a}|

+ |{the non-monochromatic pair (x, y)| y − ax ≥ 0}|
+ |{the non-monochromatic pair (x, y)| y + ax ≤ n}|

≤ |R||B|
a + |{(R,B), (B, R)| y − ax ≥ 0}|+ |{(R, B), (B,R)| y + ax ≤ n}|

, by lemma 1 ¤.

When the points on the x-axis and the y-axis are painted with either color red or blue.

|{(R,B), (B, R)| y + ax ≤ n}| is the number of non-monochromatic coordinate pairs

inside the triangle 1.

Similarly |{(R, B), (B, R)| y − ax ≥ 0}| is the number of non-monochromatic coordi-

nate pairs inside the triangle 2.

y = ax

Triangle 1 Triangle 2

x x

y y

y = n − ax
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Divide the interval [1, n] into k consecutive intervals.

Let ri be the number of red points in the interval Ii.

Let bi be the number of blue points in the interval Ii.

Let Si,j be the number of non-monochromatic pairs in the square of Ii × Ij .

Let Ti,j be the number of non-monochromatic pairs in the intersection of triangle and

the square Ii × Ij .

Note: ri + bi = n
k .

Theorem 3) Q2 ≤ 57n2

121 + O(n).

We find an upper bound of Q2 by using calculus on the equation from the previous

lemma.

The main part of calculating Q2 is to compute the maximum number of non-

monochromatic pairs in triangle 1 and triangle 2 in the pictures above. We partition an

interval [1, n] into k smaller intervals with equal length called them I1, .., Ik. However

there are Ii×Ij for some i, j that intersect the triangle only partly. We denote them Ti,j .

For each Ti,j we have two ways to bound it

1) Ti,j ≤ area of the intersection of triangle and the square Ii × Ij .

2) Ti,j ≤ Si,j = ribj + rjbi.

In this case, we use 11 intervals, k = 11.

In triangle 1, we bound T1,10, T2,9, T2,8, T3,7, T3,6, T5,3, T5,2 and T6,1 by the area of each

intersecting triangle. We bound T1,11, T4,5 and T4,4 by Si,j .

In triangle 2, we bound T2,4, T3,5, T3,6 and T6,11 by the area of each intersecting triangle.

We bound T1,1, T1,2, T2,3, T4,7, T4,8, T5,9 and T5,10 by Si,j .
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We then run the Maple program. We get four optimal solutions to the maximum of

Q2. Two of them are

[r1, r2, ..., r11] = [ n
11 , n

11 , 0, n
11 , 0, 0, 0, 0, 0, n

11 , 0] and [ n
11 , n

11 , 0, 0, 0, 0, 0, 0, n
11 , n

11 , n
11 ]. The

other two are the switching colors of the first two.

This yields the maximum of Q2 as 57n2

121 + O(n). ¤

Definition:

Let Mχ,a(n) be the number of monochromatic triples of solutions of x + ay = z for

a 2-coloring of [1, n].

Corollary 4) Mχ,2(n) ≥ 7n2

484 + O(n).

Proof:

The total number of triples = |monochromatic triples|+ |non-monochromatic triples|
= Mχ,a(n) + Qa

2 .

Since the total number of triples is n2

2a + O(n), we have Mχ,a(n) ≥ n2

2a − Qa

2 + O(n).

The lower bound, we found, of Mχ,2(n) follows from the upper bound of Q2 from The-

orem 3. ¤

Note:

1) For a = 3, we found, Mχ,3(n) ≥ n2

2268 + O(n). We ran the calculus program on 9

intervals with a particular upper bound of Ti,j .

2) For case a ≥ 4, we could not find a positive lower bound for Mχ,a(n) yet. One of the

reasons is that the upper bound of Mχ,a(n) is very small.
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7.4 The minimum number, over all r-coloring of [1, n], of monochro-

matic Schur triples

7.4.1 A Greedy Algorithm for Upper bounds

The method to obtain the upper bounds in this section is similar to the one used in

sections 2 and 3. In general we start with the first interval with color 1. Then we add

interval 2 with color 2 in the optimal way. Then we add the third interval starting with

color 1. If we get a positive solution , we move to the fourth interval. Otherwise we

try with color 2. We keep going on in this fashion until there is no color that gives a

positive solution.

Since there are many intervals involved in the computation, it is too much computa-

tion to do by hand. We wrote a computer program to help us compute the solutions for

each r-coloring. The work was not so straightforward as we thought, since the details

of counting triples and doing calculus at the same time are a bit tricky. But we made

it at the end. We list the colorings up to r = 5, as examples, below. The program is

available for download from the web site.

Definitions:

C = list of the coloring in order.

L = length of each interval (proportional to each other) corresponding to each color in

C.

N = number of monochromatic Schur triple according to C and L.

r = 1, C = [1], L = [1], N = n2

4 + O(n).

r = 2, C = [1, 2, 1], L = [1, 3
2 , 1

4 ], N = n2

22 + O(n).

r = 3, C = [1, 2, 1, 3, 1, 2, 1], L = [1, 3
2 , 1

4 , 3, 1
8 , 487

440 , 47
440 ], N = 47n2

6238 + O(n)

∼ n2

132.7234 + O(n).
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For r ≥ 4, the lengths of the intervals are fractions with huge numerators and denomi-

nators. So we omit C and L here.

r = 4, N = 69631222699293042329481527n2

67076984091396704809405315398 + O(n) ∼ n2

963.3176 + O(n).

r = 5 , N ∼ n2

7610.0730 + O(n).

For r = 6, the lengths of the intervals are even larger fractions. This caused Maple to

slow down. We waited for about 8 hours and we stopped. We did not get an answer.

However we were not really disappointed about this failure. The algorithm is more

important.

7.4.2 Lower bounds

The method used to find a lower bound in the previous two sections could not be

adapted for r-colorings, r ≥ 3. We did not make any progress for a lower bound of

r-coloring cases.

7.5 About the program

LowerBound(k, C)

input: the number of intervals k, list of types of upper bound C of Ti,k−i+1.

output: lower bound of Mχ(n), the upper bound of Q and the optimal solution of Q.

LowerBound2(k,C1, C2, a)

input: the number of intervals k, list of types of upper bound C1 and C2 of Ti,k−i+1

and number a in equation x + ay = z.

output: lower bound of Mχ,a(n), the upper bound of Qa and the optimal solution of Qa.

minAllST (n, r)

input: length of intervals n, number of colors r.
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output: the r-coloring of all the interval of length n that has the least number of

monochromatic Schur triples.

Ord(C,L, n)

input: the list of coloring, the list of length corresponding to each color in C, symbol

n.

output: the number of the monochromatic Schur triples of order n2.

Zeil(r)

input: number of color r.

output: the coloring with length of each coloring and also the total number of triples

of order n2 obtained from the Greedy Algorithm.

7.6 Conclusion

We have new upper bounds for generalized Schur triples x + ay = z, a ≥ 2, in the

2-coloring case. We also have new upper bounds for Schur triples x + y = z, for r-

colorings, r ≥ 3 that considerably improve those of [6]. But we failed to match the

lower and upper bounds for these two problems. There is a possibility that other argu-

ments in other papers [10], [3] and [9] for the lower bound used in the original problem

can be adapted for the r-coloring problem. But the details of such an argument seem

complicated. We believe these upper bounds are actually optimal. There might even

be a beautiful simple way to solve it, but we failed to find it this time. We leave them

as conjectures.

Conjectures:

1) The (asymptotic) number of minimum monochromatic triples of the form {x, y, x +

ay}, a ≥ 2 of 2-colorings of [1, n], are n2

2a(a2+2a+3)
+ O(n).
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2) The (asymptotic) number of minimum Schur triples of r-colorings of [1, n], r ≥ 3,

are the same as the upper bounds obtained from the Greedy Algorithm.
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Chapter 8

The Symbolic Moment Calculus On Ramsey Type

Problems (and how it could make YOU famous)

The expectation functional is a powerful tool in the study of combinatorial objects, and

often gives us quite useful information. To find the higher moments, the computation

gets complicated very fast and we need computers to do symbolic computation for us.

The technique has already been demonstrated in [12], [13]. Once we find high enough

moments, they could actually be useful for calculating lower bounds for enumerating

combinatorial objects (see [13]).

In the first part of this chapter, we compute the first few moments of the random

variable “number of monochromatic Schur Triples” defined on r-coloring of [1, n], as

well as those for the random variable “number of monochromatic complete graphs Kk”

defined on r-edge-colorings of Kn. In the second part, we speculate about possible

applications to improving the dismall known lower bounds on Ramsey numbers.

8.1 Symbolic Moment Calculus

Let U be a set of elements and P be a set of properties. For each u ∈ U and p ∈ P,

u either does or does not enjoy property p. Let X : U → Z≥0 be the random variable

defined by X(u) := the number of properties in P enjoyed by u.

In general, we need lots of calculations in order to compute higher moments. The

beauty of the present Symbolic Moment Calculus is that one can check formulas with

numerical results in small cases.
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8.1.1 On the Number of Monochromatic Schur Triples of r-colorings

of [1, n]

We let U be set of all r-integer-colorings of [1, n], and X(u) be the number of monochro-

matic Schur triples {x, y, x + y} of [1, n] in u ∈ U .

Of course, E[X0] = 1, E[X] is a bit harder, but higher moments get increasingly

hard to do, and past the second moment, are infeasible without a computer.

Let’s write

X =
∑

S

XS , (A-1)

where the sum is over all triples S, {x, y, x+y} of [1, n], and XS is the indicator random

variable that is 1 if the triple of [1, n] induced by S is monochromatic.

We also have

Xr =
n∑

i1=1

n∑

i2=1

...

n∑

ir=1

Xi1Xi2 ...Xir , (A-2)

and by linearity of expectation and symmetry, we further have

E[Xr] =
n∑

i1=1

n∑

i2=1

...

n∑

ir=1

E[Xi1Xi2 ...Xir ], (A-3)

The difficulty in calculating the higher moments lies in how these random variables

interact with each other.

The first moment:

A triple S can be written as S = S1 ∪S2 where S1 is a triple of the form {x, x, 2x} and

S2 is a triple of the form {x, y, x + y}, x 6= y.

E[XS1 ] = r( 1
r2 ) = 1

r .

E[XS2 ] = r( 1
r3 ) = 1

r2 .
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Already there are two formulas for E[X] depending on whether the length of the inter-

val n is odd or even.

Case 1: n is odd

E[X] =
∑

S E[XS ]

=
∑

S1
E[XS1 ] +

∑
S2

E[XS2 ]

= 1
r (n−1

2 ) + 1
r2 ((n− 2) + (n− 4) + (n− 6) + ... + (1))

= 1
r (n−1

2 ) + 1
r2 (n−1

2 )2

= (n−1)(n−1+2r)
4r2 .

Case 2: n is even

E[X] =
∑

S1
E[XS1 ] +

∑
S2

E[XS2 ]

= 1
r (n

2 ) + 1
r2 ((n− 2) + (n− 4) + (n− 6) + ... + (0))

= 1
r (n

2 ) + 1
r2 (n

2 )(n
2 − 1)

= n(n−2+2r)
4r2 .

The second moment:

The calculation for the second moment is much harder. We consider 2-tuples [S1, S2]

of triples {x, y, x + y} of [1, n].

E[X2] = E[(
∑

S1
XS1)(

∑
S2

XS2)] =
∑

[S1,S2] E[XS1XS2 ].

The sum depends on how S1 and S2 interact with each other. For each configuration

of S1∪S2, 2 ≤ |S1 ∪ S2| ≤ 6. For example, |S1 ∪ S2| = 6 when |S1| = |S2| = 3 and these

two triples do not intersect.

Let K := S1 ∪ S2 represent each isomorphic configuration. While the first moment

has only 2 isomorphic configurations {x, x, 2x} and {x, y, x + y}, x 6= y, the second
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moment has 42 configurations.

We call the number of each isomorphic K occurring in the sum the weight W (K).

We need to find E[XS1XS2 ] and the weight of each K. Then apply the relation:

E[X2] =
∑

[S1,S2]

E[XS1XS2 ] =
∑

K∈K
E[XS1XS2 ]W (K). (A-4)

The first quantity E[XS1XS2 ] is not hard to compute.

Let p := |S1 ∪ S2|.
E[XS1XS2 ] = r

rp if |S1 ∩ S2| 6= 0 and E[XS1XS2 ] = r2

rp if |S1 ∩ S2| = 0.

To compute W (K) is harder. One way to do so is to use Goulden-Jackson Cluster

method, see [7]. This method gives us a generating function in terms of n.

Formulas for E[X2]:

E[X2] has 12 formulas up to the values of n mod 12.

I obtain the formulas by using both the Goulden-Jackson Cluster method and poly-

nomial ansatz. For each K contributes to E[X2], I first find the generating function

using Goulden-Jackson Cluster method. This gives me the period l of K. Then I nu-

merically compute the value of W (K) for each n. Finally I interpolate the polynomial,

p(n) of degree at most 4 with the period l that fits the numerical results. This polyno-

mial ansatz gives a rigorous proof of the second moment.

As an example, we show the formula of E[X2] in the case when n ≡ 1 mod 12.

E[X2] = (n−1)(24r3−76r−27n+65−9n2+12rn2+24r2n+3n3−16r2)
48r4
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The complete solutions can be found at the author’s website.

The higher moment, the m-th moment:

We now consider m-tuples [S1, S2, ..., Sm] of triples {x, y, x + y} of [1, n].

E[Xm] =
∑

[S1,S2,..,Sm] E[XS1XS2 ..XSm ].

We again consider the isomorphic configuration K, its weight W (K) and its prob-

ability E[XS1XS2 ..XSm ].

For E[X3], we find out that there are more than 500 isomorphic configurations of

S1 ∪ S2 ∪ S3 with at least 72 formulas up to the values of n mod 72. I tried for about

3 weeks, but in the end, I felt like it was too much effort. We were not lucky with

computing E[X3] but at least we know it is not easy to compute higher moments.

8.1.2 On the Number of Monochromatic Kk on Kn

Here, we let U be set of all r-edge-colorings of Kn, and X(u) be the number of monochro-

matic Kk in u ∈ U .

It is clear that E[X0] = 1, E[X] = r

r(
k
2)

(
n
k

)
. However, computing E[X2] is harder.

We need a computer for E[X3].

We are interested in the formulas of E[Xs], s ≥ 0 where the inputs are numeric m

and k for the mth-moment and the monochromatic Kk, and the output is in the form

of symbolic n and r for Kn and r-edge-coloring.

Write
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X =
∑

S XS

where the sum is over all k-subsets of {1..n}, and XS is the indicator random variable

that is 1 if the subgraph of Kn induced by S is monochromatic.

The first moment:

By simple calculation, we can show E[XS ] = r

r(
k
2)

. Thus, we find the expectation

E[X] =
r

r(
k
2)

(
n

k

)
. (A-5)

The second moment:

We again start with the relation,

E[X2] =
∑

[S1,S2] E[XS1XS2 ].

The isomorphic configuration K is entirely up to the size of S1 ∪ S2.

|S1 ∩ S2|

The goal is to figure out E[XS1XS2 ] and the weight of each K.

E[XS1XS2 ] can be found as follow.

Let j = |S1 ∩ S2|. If j = 0 or 1 then E[XS1XS2 ] = ( r

r(
k
2)

)2. If j = |S1 ∩ S2| ≥ 2 then

all the edges of S1 ∪ S2 must have the same color and hence E[XS1XS2 ] = r

r
2(k

2)−(j
2)

. In

this case, the weight W is also not hard to compute.

W = n!
(k−j)!(k−j)!j!(n−((k−j)+(k−j)+j))! where j = |S1 ∩ S2|.

We then make use of the previous formula for E[X2].
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E[X2] =
∑

[S1,S2]

E[XS1XS2 ] =
k∑

j=0

Prob(K)W (K) (A-6)

where j represents |S1 ∩ S2| and Prob(K) = E[XS1XS2 ] where K = S1 ∪ S2.

The equation (A-6) is not so complicated, we can write it out explicitly.

E[X2] =
∑1

j=0(
r

r(
k
2)

)2T (j) +
∑k

j=2
r

r
2(k

2)−(j
2)

T (j),

where T (j) = n!
(k−j)!(k−j)!j!(n−((k−j)+(k−j)+j))! .

For example when k = 3, E[X2] can be written as

E[X2] = n!
3!3!0!(n−6)!

1
r4 + n!

2!2!1!(n−5)!
1
r4 + n!

1!1!2!(n−4)!
1
r4 + n!

0!0!3!(n−3)!
1
r2

= (n−2)(n−1)n(n3−3n2+2n−6+6r2)
36r4

For k = 4,

E[X2] = n!
4!4!0!(n−8)!

1
r10 + n!

3!3!1!(n−7)!
1

r10 + n!
2!2!2!(n−6)!

1
r10 + n!

1!1!3!(n−5)!
1
r8 + n!

0!0!4!(n−4)!
1
r5

= (n−3)(n−2)(n−1)n(n4−6n3+11n2−102n+360+96r2n−384r2+24r5)
576r10

For the general case, the mth moment:

We now consider m-tuples [S1, S2, ..., Sm] of k subsets of {1, .., n}.

E[Xm] = E[(
∑

S1
XS1)(

∑
S2

XS2)...(
∑

Sm
XSm)] =

∑
[S1,S2,..,Sm] E[XS1XS2 ..XSm ].

We again consider the isomorphism class of the configuration K, its probability,

E[XS1XS2 ..XSm ], and its weight W (K).

The weight W (K) can be computed directly from the way S1, S2, ..., Sm intersect

each other. The probability can be computed in a similar way.
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prob(K) =
∏

D
r

re(d) where we multiply through all the chains d in D and e(d) is the

number of edges in d. Si is in the chain d if there is some Sj in d such that |Si ∩ Sj | ≥ 2.

Example

From the picture above,

W (K) =
(

n
1!,1!,1!,1!,2!,1!,2!,2!,(n−11)!

)

Since there are three chains, the probability is

Prob(K) = E[XS1XS2XS3 ] = ( r
r8 )( r

r3 )( r
r3 ). ¤

Although we know how to compute W (K) and prob(K) for each K, there are still

lots of isomorphic configurations when the number of moment is high.

We show the computation of third moment when the input is k.

E[X3] =
k−j∑

i3=0

k−j∑

i2=0

k−j∑

i1=0

k∑

j=0

W (K)prob(K) (A-7)

where W (K) = n!
j!i1!i2!i3!(k−j−i1)!(k−j−i2)!(k−j−i3)!(n−|S1∪S2∪S3|)! ,

prob(K) depends how S1, S2 and S3 intersect.

The number of sums grows exponentially as the number of moment goes up. We

need symbolic computation program to compute the higher moments for us. I imple-

mented this idea in Maple program. Disappointingly, even with a computer we could

compute up to only the fifth moment. The program and the outputs are also at the
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author’s website.

The formulas may not have detectable patterns in either k or m. However we have

a nice way to think about how these formulas arise.

8.2 Applications

8.2.1 Introduction

Every student of Ramsey theory has heard the following statement: In any party of six

people, there is either a group of three people who are mutual strangers or a group of

three people who are mutual acquaintances (or both)

We define R(k, k) to be the smallest number n for which for any 2-coloring of the

edges of Kn, say with red or blue, contains either a totally red Kk or a totally blue Kk.

It is known that R(3, 3) = 6 and R(4, 4) = 18, but R(5, 5) is still unknown. We see that

the exact value of R(k, k) is very hard to determine because of the gigantic possibilities

of edge-colorings.

The question about the asymptotic behavior of R(k, k) is a famous open problem

in combinatorics. There is even a monetary prize, $250, for the answer of the problem.

Paul Erdös used the first moment E[X] to obtain a lower bound of limk→∞R(k, k) (if

it exists). We can also state the idea in terms of the pigeonhole principle.

If E[X] < 1 then P (X = 0) > 0.

In the language of the Moment Calculus ,with the same notation as above, we want

to find n such that E[X] < 1 implies R(k, k) > n.

However the full strength of the idea along the same lines can be obtained by
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the generalization of the Principle of Inclusion-Exclusion (PIE), called Bonferroni’s

inequality.

Recall that the Principle of Inclusion-Exclusion can be stated as follows.

P (X = 0) =
∑

s≥0

(−1)sE[
(

X

S

)
]. (A-1)

To compute P (X = 0) from (A-1) is definitely out of reach. But we can still hope

to get useful information from Bonferroni’s inequality, that who knows?, may lead to

an improvement of the lower bound.

Bonferroni’s inequality:

For any odd m,

P (X = 0) ≥
m∑

s=0

(−1)sE[
(

X

S

)
], (A-2)

For any even m,

P (X = 0) ≤
m∑

s=0

(−1)sE[
(

X

S

)
]. (A-3)

Erdös used m = 1 to get the lower bound limk→∞R(k, k)
1
k ≥ √

2. However m = 3,

and even m = 5, do not seem to improve the lower bound at all. In my opinion, we

need a much bigger m. That means we also need lots more computation. I will discuss

my idea about how to do the calculation with a lot of moments in the next section.

Even if the naive Bonferroni’s sieve would fail to do the job, the insight gained may be

useful in using other, more delicate future sieves.

8.2.2 Calculation

We start this section by crossing our fingers and really believing in the beauty of

Mathematics. The plan is clear. We will use a lot of higher moments as an input to

Bonferroni’s inequality to try to improve the lower bound of limk→∞R(k, k)
1
k .
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But how many moments do we need to improve the famous lower bound? We are

not sure yet. Let’s say we use m = k to begin with.

There are lots of terms when the moments goes up. We can not calculate every

term. However we will pick some significant terms in each of the moments and pick a

value of n in terms of k with the hope that the rest of terms will be dominated and at

the same time n improves the lower bound. In other words, we only aim at the first

leading terms in the asymptotic expansion for the moments.

We start our calculation with the term which we think is the biggest one. The term

in the moment E[Xi] where all Si completely intersect; |S1 ∪ S2 ∪ ... ∪ Sm| = k. We call

this term A1. Let Wj(i) be the number of Aj in E[Xi]. We want to find Wj(i) of each Aj .

For A1, we have that,

A1 = E[X] =
2

2(k
2)

(n)k

k!
. (A-4)

where (n)k = n(n− 1)(n− 2)...(n− k + 1). We call (n)k a falling factor.

Since there is only one way to get the term A1 for each of the moment E[Xi], i ≥ 1,

W1(i) = 1 for i ≥ 1.

Now we consider the second biggest term where |S1 ∪ S2 ∪ .. ∪ Sm| = k + 1.

There are many ways to get this configuration. We first consider the one with most

intersection points.

First: Consider the term A22 where |S1 ∩ S2 ∩ .. ∩ Sm| = k − 1.

Let Pi be the set of number of moments that the point i contains. We see Pi =

{1, 2, ...,m}, 1 ≤ i ≤ k − 1. However the last two points, Pk ∪ Pk+1 = {1, 2, 3, ...,m}.
where Pk 6= { } and Pk+1 6= { }.
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k − 1 points

The number of edges in |S1 ∪ S2 ∪ .. ∪ Sm| =
(
k−1
2

)
+ 2(k − 1)

= k2

2 − 3k
2 + 1 + 2k − 2

= k2

2 + k
2 − 1.

A22 =
2

2
k2

2
+ k

2
−1

(n)k+1

(k − 1)!1!1!
. (A-5)

By elementary counting we know, W22(i) = 2i

2 − 1; i ≥ 2.

Note: A1/A22 = ( 2

2(
k
2)

(n)k

k! )/( 2

2
k2
2 + k

2−1

(n)k+1

(k−1)!1!1!) = 2k

2
1

(n−k−1)k .

Second: Consider the term A23 where |S1 ∩ S2 ∩ .. ∩ Sm| = k − 2.

k − 2 points
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Each of the k − 2 points contains in each of S1, S2, ..., Sm. However the last three

points need to contain two copies of {1, 2, ..., m} where the number appears in each

point at most once.

The number of edges in |S1 ∪ S2 ∪ .. ∪ Sm| =
(
k−2
2

)
+ 3(k − 2) + 3

= k2

2 − 5k
2 + 3 + 3k − 3

= k2

2 + k
2 .

Hence,

A23 =
2

2
k2

2
+ k

2

(
(n)k+1

(k − 2)!1!1!1!
). (A-6)

And,

W22(i) = S(i, 3) = 1
2 − 2i

2! + 3i

3! ; i ≥ 3 where S(i, l) is the Stirling number of second

kind.

Note: A1/A23 = ( 2

2(
k
2)

(n)k

k! )/ 2

2
k2
2 + k

2

(n)k+1

(k−2)!1!1!1! = 2k 1
(n−k−1)k(k−1) .

In general:

We consider the case where |S1 ∪ S2 ∪ .. ∪ Sm| = k + l and |S1 ∩ S2 ∩ .. ∩ Sm| =

k − l, 1 ≤ l ≤ k − 1. We have that Pi = {1, 2, ...,m}, 1 ≤ i ≤ k − l. However the last

l + 1 points contain l copies of {1, 2, 3, ..., m} where the number appears in each point

at most once.

The number of edges in |S1 ∪ S2 ∪ .. ∪ Sm| =
(
k+1
2

)

= k2

2 + k
2 .

Hence,
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A2(l+1) =
2

2
k2

2
+ k

2

(
(n)k+1

(k − l)!1!1!1!
). (A-7)

We can write out W2(l+1)(i) by using the summation form of Stirling numbers of

second kind.

S(i, l + 1) = 1
(l+1)!

∑l+1
j=0(−1)(l+1−j)

(
l+1
j

)
jn; i ≥ l + 1

Note: A1/A2(l+1) = 2k 1
(n−k−1)(k)l

.

So far so good. We have everything in control. Now we consider the third biggest

term where |S1 ∪ S2 ∪ .. ∪ Sm| = k +2. At this point the difficulty starts since counting

the number of edges in |S1 ∪ S2 ∪ .. ∪ Sm| and the weight W is getting more complicated.

First: Consider the term A33 where |S1 ∩ S2 ∩ .. ∩ Sm| = k − 1.

k − 1 points

By performing a routine calculation, we have that

The number of edges in |S1 ∪ S2 ∪ .. ∪ Sm| =
(
k−1
2

)
+ 3(k − 1)

= k2

2 + 3k
2 − 2.

A33 =
2

2
k2

2
+ 3k

2
−2

(
(n)k+2

(k − 1)!1!1!1!
). (A-8)
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And,

W33(i) = S(i, 3), i ≥ 3.

Note: A1/A33 = 22k

4
1

(n−k−1)(n−k−2)(k) .

Second: Consider the term A34 where |S1 ∩ S2 ∩ .. ∩ Sm| = k − 2.

k − 2 points
k − 2 points

or

or

k − 2 points

There are more subcases to consider in this case. Some of the subcases are harder

to count the weights of. Even though the problem looks like a generalized problem of

Stirling numbers of second kind. We got stuck here. I hope to use symbolic computa-

tion to help make progress in the future.

Bonferroni’s inequality Calculation
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Recall that we will use Bonferroni’s inequality (A-2) in section 8.2.1 to try to im-

prove the known lower bound.

Since we already calculated some of the very first terms, let’s try to see the impact of

these terms on Bonferroni’s inequality. We write the right hand side of equation (A-2) as

∑m
s=0(−1)sE[

(
X
S

)
] = 1 + c1A1 + c22A22 + c23A23 + ... + c2kA2k + ss.

where ss represents other terms that we are not able to calculate yet.

Lemma 5. c1 = −1, c2l = (−1)l

l! , if we use m ≥ k in the above equation.

Proof. c1 = −1 since only E[X] contributes 1 to this term.

c22 = 1
2 ,

since S(i, 2) = 2i

2 − 1, i ≥ 2 so E[
(
X
k

)
], k ≥ 3 contributes 0 to this term and E[

(
X
2

)
]

contributes 1
2 to this term.

c23 = −1
6 ,

since S(i, 3) = 1
2 − 2i

2! + 3i

3! , i ≥ 3 so E[
(
X
k

)
], k ≥ 4 contributes 0 to this term and

E[
(
X
3

)
] contributes 1

6 to this term.

The remaining terms work similarly.

Now, let’s see how these parts affect the calculation for the lower bound:

∑k
s=0(−1)sE[

(
X
S

)
]

= 1−A1 + 1
2A22 − 1

6A23 + ... + (−1)k

k! A2k + ss.
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= 1−A1 + 1
2(2nk

2k )A1 − 1
6(nk(k−1)

2k )A1 + 1
24(nk(k−1)(k−2)

2k )A1 − ... + (−1)k

k! A2k + ss.

= 1−A1 + 1
2(nk

2k )A1 + n
2k A1( k

2! − k(k−1)
3! + k(k−1)(k−2)

4! − ... + (−1)k

k! k!) + ss.

= 1−A1 + 1
2(nk

2k )A1 + n
2k A1(

∑k
i=2

k!(−1)i

i!(k−i+1)!) + ss.

There might be an easy interpretation for the sum on the right hand side that I have

overlooked. But one easy way to solve it is to plug into a Maple program.

= 1−A1 + 1
2(nk

2k )A1 + n
2k A1(

(−1)k+k
k+1 ) + ss.

= 1−A1 + n
2k A1(k

2 + (−1)k+k
k+1 ) + ss.

This is the start of the calculation. We did not make much progress. But I am excited

to share the ideas here. In future we hope to calculate more of the terms in ss. We

hope to see patterns or to find the way to show that the other terms are small.
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