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Background

Figure: Roger Apéry
Figure: His famous work in
1979

Roger Apéry was born in Rouen in 1916 to a French mother and
Greek father. After studies at the cole Normale Suprieure
(interrupted by a year as prisoner of war during World War II) he
was appointed Lecturer at Rennes. In 1949 he was appointed
Professor at the University of Caen where he remained until his
retirement. In 1979 he published an unexpected proof of the
irrationality of ζ(3)



Introduction

• First time with irrational number, π.

• What should I have learned about an approximation of π.

Archimedes used a regular n-gon to approximate the value of
π.

n sin (2πn )

2 sin (π2 −
π
n)

< π <
n sin (πn)

sin (π2 −
π
n)

• Other famous numbers that were proved to be irrational are√
2, e, ln (2) and ζ(2k) for every positive integer k.

• Proof of irrationality of
√
2 by contradiction.
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How it should have been proved for
√
2 to be irrational

To rigorously proof that
√
2 is irrational.

First consider

y := 2 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...

By using self-similarly, deduce the equation.

y = 2 + 1/y

Solving the quadratic equation to get y = 1 +
√
2. Hence, the

infinite fraction indeed equals 1 +
√
2.

Therefore 1 +
√
2 and

√
2 are indeed irrational.



This proof is much better because ...

•
pn
qn

:= [2, 2, 2, . . . , 2] , repeated n times.

pn and qn can be written in the form of recurrence relation.

• Proposition

Let ξ := lim
n→∞

pn
qn
. Then ξ exists and is an irrational number.

• Furthermore, the error, ξ − pn
qn

can be easily estimated:∣∣∣∣ξ − pn
qn

∣∣∣∣ =
∣∣∣∣∣
∞∑

i=n+1

(−1)i

qiqi−1

∣∣∣∣∣ ≤ C

q2n
,

for some easily computable constant, C.
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Dirichlet’s Approximation Theorem

• This is a fundamental result in Diophantine approximation ,
showing that any real number has a sequence of good rational
approximations (Dirichlet):∣∣∣∣ξ − pn

qn

∣∣∣∣ < 1

q2n
(1)

• However if ξ is a rational a/b. If ξ 6= r, then

|ξ − r| =
∣∣∣∣ab − p

q

∣∣∣∣ = |bp− aq|bq
≥ 1

bq
,

So equation (1) involves q < b. There are therefore only a
finite number of solutions of equation (1).
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Dirichlet’s Approximation Theorem

• This leads to

Theorem (irrationality criterion)

If there is a δ > 1 and an infinite sequence of distinct {pn/qn} of
rational numbers such that ξ 6= pn/qn and∣∣∣∣ξ − pn

qn

∣∣∣∣ < 1

qδn
, n = 1, 2, ...

then ξ is irrational.

• Apéry’s original proof was based on this well known
irrationality criterion.
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Apéry’s Proof

• Apery defined a sequence cn,k by

cn,k =

n∑
m=1

1

m3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

) .
He then defined two more sequences an and bn that, roughly,
have the quotient cn,k. These sequences were

an =

n∑
k=0

cn,k

(
n

k

)2(n+ k

k

)2

and

bn =

n∑
k=0

(
n

k

)2(n+ k

k

)2

.



Apéry’s Proof

• From here, we will follow some simple steps to arrive to the
that ζ(3) is irrational.

• Fact 1:
lim
n→∞

an
bn

= ζ(3).

• Fact 2: Both an and bn satisfy the same recurrence relation:

n3un−(34n3−51n2+27n−5)un−1+(n−1)3un−2 = 0, n ≥ 2.

with the initial conditions u0 = 0 and u1 = 6 for an and
u0 = 1 and u1 = 5 for bn.
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Apéry’s Proof

• Fact 3: ∣∣∣∣ζ(3)− an
bn

∣∣∣∣ = O(b−2n ).

• Fact 4: bn ≈ c · (1 +
√
2)4n.

• Fact 5: Let pn = 2 lcm(1, 2, 3, . . . , n)3an and
qn = 2 lcm(1, 2, 3, . . . , n)3bn then∣∣∣∣ζ(3)− pn

qn

∣∣∣∣ = C/qδn where δ =
2 logα

logα+ 3
≈ 1.080529... > 1.

Then by the irrationality criterion, we conclude that ζ(3) is
irrational.
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Searching for Miracle
The Three kinds of Apéry Miracles

• A minor Apéry miracle is when

α := lim
n→∞

p(n)

q(n)

equals a well known constant, expressible in terms of π, e, γ,
etc.

• A major Apéry miracle is when

α := lim
n→∞

p(n)

q(n)

equals a well known constant, expressible in terms of π, e, γ,
etc and it appears that δ > 1, thereby proving irrationality.

• A super Apéry miracle is when, in addition, the constant α
has not yet been proven to be irrational, making you famous.
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• A major Apéry miracle is when

α := lim
n→∞

p(n)

q(n)

equals a well known constant, expressible in terms of π, e, γ,
etc and it appears that δ > 1, thereby proving irrationality.
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It’s All Come Down to Experimental Mathematics

Mathematics is an experimental science.
There is a room to search for another miracle (?)



Epilogue

• About a year after Apéry announced his result, Beukers found
a simpler proof ,not rely on recurrence relation, using only
integration and Legendre polynomials.

• Based on this idea, T. Rivoal, in 2000, showed that there are
infinitely many irrational numbers among ζ(3), ζ(5), ζ(7), . . . .

• Then Zudilin, in 2001, showed that at least one of the four
numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.
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