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Abstract

Using Difference Equations and Zeilberger’s algorithm, we give a
very simple proof of a conjecture of Asmus Schmidt that was first
proved by Zudilin.

For any integer r ≥ 1, the sequence of numbers {c(r)k }k≥0 is defined im-
plicitly by∑

k

(
n

k

)r(
n+ k

k

)r

=
∑

k

(
n

k

)(
n+ k

k

)
c
(r)
k , n = 0, 1, 2, . . .

In 1992, Asmus Schmidt [4] conjectured that all c
(r)
k are integers. In Concrete

Mathematics [1] on page 256, it was stated as a research problem. Already

here, it was indicated that H. Wilf had shown the integrality of c
(r)
n for any

r but only for n ≤ 9. For the first nontrivial case, r = 2;
∑

k

(
n
k

)2(n+k
k

)2
are

the famous Apéry numbers, the denominators of rational approximations to
ζ(3). This case was proved in 1992 independently by Schmidt himself [5] and

by Strehl [6]. They both gave an explicit expression for c
(2)
n

c(2)
n =

∑
j

(
n

j

)3

=
∑

j

(
n

j

)2(
2j

n

)
.
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These numbers are called Franel numbers. In the same paper [6], Strehl
also gave a proof for r = 3 which uses Zeilberger’s algorithm of creative
telescoping. He also gave an explicit expression for c

(3)
n

c(3)
n =

∑
j

(
n

j

)2(
2j

j

)2(
2j

n− j

)
.

The first full proof was given by Zudilin [7] in 2004 using a multiple gener-
alization of Whipple’s transformation for hypergeometric functions. Since
then, the congruence properties related to the Schmidt numbers S

(r)
n :=∑

k

(
n
k

)r(n+k
k

)r
and to the Schmidt polynomials S

(r)
n (x) :=

∑
k

(
n
k

)r(n+k
k

)r
xk

have been studied extensively. In this note, we return to Schmidt’s original
problem and present a simple proof.

It is a natural first step to investigate the individual term
(

n
k

)r(n+k
k

)r
before considering the full sum

∑
k

(
n
k

)r(n+k
k

)r
. Our proof rests on the fol-

lowing lemma, which was proved by Guo and Zeng [3, 2]. In order to keep
this note self-contained, we give a simple, well motivated, computer proof of
their lemma.

Lemma. For k ≥ 0 and r ≥ 1, there exist integers a
(r)
k,j with a

(r)
k,j = 0 for

j < k or j > rk, and(
n

k

)r(
n+ k

k

)r

=
∑

j

a
(r)
k,j

(
n

j

)(
n+ j

j

)
(1)

for all n ≥ 0.

Proof. Define ā
(r)
k,j recursively by ā

(1)
k,k = 1, ā

(1)
k,j = 0 (j 6= k) and

ā
(r+1)
k,j =

∑
i

(
k + i

i

)(
k

j − i

)(
j

k

)
ā

(r)
k,i . (2)

Then it is clear that ā
(r)
k,j are integers.

We show by induction on r that ā
(r)
k,j satisfies (1). The statement is clearly
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true for r = 1. Suppose the statement is true for r. Then∑
j

ā
(r+1)
k,j

(
n

j

)(
n+ j

j

)
=
∑

j

∑
i

ā
(r)
k,i

(
k + i

i

)(
k

j − i

)(
j

k

)(
n

j

)(
n+ j

j

)
(by definition of ā

(r+1)
k,j )

=
∑

i

ā
(r)
k,i

∑
j

(
k + i

i

)(
k

j − i

)(
j

k

)(
n

j

)(
n+ j

j

)
=
∑

i

ā
(r)
k,i

(
n

i

)(
n+ i

i

)(
n

k

)(
n+ k

k

)
=

(
n

k

)r(
n+ k

k

)r(
n

k

)(
n+ k

k

)
(by induction hypothesis)

=

(
n

k

)r+1(
n+ k

k

)r+1

.

The identity from line 2 to line 3,(
n

i

)(
n+ i

i

)(
n

k

)(
n+ k

k

)
=
∑

j

(
k + i

i

)(
k

j − i

)(
j

k

)(
n

j

)(
n+ j

j

)
,

can be verified easily with Zeilberger’s algorithm.
Therefore ā

(r)
k,j satisfies (1). For the lemma, we can now take a

(r)
k,j = ā

(r)
k,j.

The definition (2) may seem to come out of nowhere. It was found as
follows. We tried to find a relation of the form:

a
(r+1)
k,j =

∑
i

s(k, j, i)a
(r)
k,i .

with the hope to find a nice formula for s(k, j, i), free of r. The coefficients
s(k, j, i) then were found by automated guessing. First we calculated the

numbers a
(r)
k,j for r from 1 to 15 and all k, j. Then we made an ansatz for a

hypergeometric term s(k, j, i). Fitting this ansatz to the calculated data and
solving the constants led to the conjecture

s(k, j, i) =

(
k + i

i

)(
k

j − i

)(
j

k

)
.
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Now we give a proof of the main statement. By the lemma, we have∑
i

(
n

i

)r(
n+ i

i

)r

=
∑

i

∑
k

a
(r)
i,k

(
n

k

)(
n+ k

k

)
=
∑

k

(
n

k

)(
n+ k

k

)∑
i

a
(r)
i,k .

Therefore, we have

c
(r)
k =

∑
i

a
(r)
i,k .

which concludes our statement.
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