
On the Ramsey Multiplicity of Complete
Graphs

Thotsaporn “Aek” Thanatipanonda

Mathematics Subject Classification: 05D10

Abstract

We define a new notation RRn(k1, k2, ..., kr), the minimum number
of monochromatic Kki

of color i, 1 ≤ i ≤ r, in an r-edge-coloring graph
Kn. We show the exact answer for RRn(2, k1, k2, ..., kr), ki ≥ 2 and
give bounds for RRn(3, 3, ..., 3).

1 Introduction

For a party of six people, there is guaranteed a group of three acquaintances
or three strangers. In terms of Graph theory, for any 2-edge-coloring of a
complete graph with 6 vertices, there must be a triangle with the same color
of edges.

Definition: The Ramsey number R(k1, k2, ..., kr) is the smallest number
n such that any r-edge-coloring of a complete graph with n vertices, Kn,
must contain at least one subgraph Kki

, of color i, for some i, 1 ≤ i ≤ r.

It is a computationally very difficult to compute the exact value of R(m, n).
We know only some small values of R such as R(3, 3) = 6 and R(4, 4) = 18.
A famous mathematician, Paul Erdös, once jokingly made fun of the search
for the values of R(5, 5) and R(6, 6). Also one of the most famous problems

in combinatorics is to find limn→∞R(n, n)
1
n (if it exists).

We know six people guarantee a group of three acquaintances or three
strangers. But how many groups of three acquaintances and three strangers
must be in a group of n people. In this paper, we investigate this type of
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problem which is considered to be a quantitative version of the Ramsey num-
ber.

Definition: RRn(k1, k2, ..., kr) is the minimum total numbers of the
monochromatic complete graph Kki

of color i, 1 ≤ i ≤ r, in the r-edge-
coloring of Kn.

In [6], Goodman showed a solution to RRn(3, 3), the minimum number
of monochromatic triangles of any 2-edge-coloring of Kn. The exact answer is

RRn(3, 3) =

(
n

3

)
− bn

2
bn− 1

2
cdn− 1

2
ec =

1

4

(
n

3

)
+ O(n2).

The solution provided below used the method called “a system of weights”
was first introduced by Suavé in [10]. By realizing that the adjacent red and
blue edges gives half of non-monochromatic triangle, we find the lower bound
of RRn(3, 3) by minimizing the function

fn(r1, r2, ..., rn) =

(
n

3

)
− b1

2

n∑
i=1

ri(n− 1− ri)c,

where ri is the number of red edges at vertex i.

We noticed that, to obtain the minimum, ri = bn
2
c or dn

2
e for each i.

Hence when n is even, we can construct such a graph by first partitioning

the vertices into two sets of size
n

2
. And then letting an edge between the

two partitions be red and an edge within each partition be blue.

Later in [4] and [5], Giraud used the modified version of this method for
the lower bound of RRn(4, 4) and RRn(3, 3, 3). He showed

RRn(3, 3, 3) ≥ 1

29

(
n

3

)
for n large enough and

RRn(4, 4) ≥ 1

46

(
n

4

)
for n large enough.

The methods used were highly technical and ad hoc. While yielding a
very good result, it is unlikely that it could be extended for the general cases.
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In section 2, we show the values of RRn(2, k), k ≥ 2 and the generalized
result namely the values of RRn(2, k1, k2, ..., kr), ki ≥ 2 for all i. We give
bounds for RRn(3, 3, ..., 3) in section 3.

2 RRn(2, k) and RRn(2, k1, k2, ..., kr)

We state Turán’s theorem before showing the main result of this section. The
reader can find proof(s) of Turán’s theorem in [1] and [3].

2.1 Turán’s Theorem

Definition: The Turán graph, Tk−1(n) is the complete (k−1)-partite graph
on n (≥ k − 1) vertices whose partition sets (pairwise) differ in size at most
1.
Definition: Let tk−1(n) be the number of edges of Tk−1(n).

Theorem 2.1 (Turán 1941) An n vertex graph with the maximum number
of edges that does not contain Kk as a subgraph is Tk−1(n).

The theorem below gives the ratio between tk−1(n) and the total number
of edges of Kn.

Theorem 2.2 tk−1(n) =
k − 2

k − 1

(
n

2

)
+ O(n).

2.2 RRn(2, k)

Theorem 2.3 RRn(2, k) =
1

2(k − 1)
n2 + O(n).

Proof: We want to minimize the number of red edges and blue monochro-
matic Kk in an 2-edge-coloring of a complete graph Kn. However, if we re-
place an edge of a blue monochromatic Kk with a red edge, the result could
only be improved. Hence the problem is equivalent to finding the minimum
number of red edges on Kn so that it does not contain any blue monochro-
matic Kk. Or other words, we want to find the maximum number of blue
edges so that it does not contain any blue monochromatic Kk. But this is
exactly Turán’s theorem! Therefore,
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RRn(2, k) =

(
n

2

)
− tk−1(n)

= (1− k − 2

k − 1
)

(
n

2

)
+ O(n)

=
n2

2(k − 1)
+ O(n). �

Example: For RRn(2, 3), the Turán graph T2(n) is a complete bipartite

graph with bn
2
c and dn

2
e vertices in each partition. The number of blue

edges in this case is bn
2

4
c. The number of red edges turns out to be

RRn(2, 3) =

(
n

2

)
− bn

2

4
c = b(n− 1)2

4
c =

n2

4
+ O(n).

2.3 RRn(2, k1, k2, ..., kr)

Theorem 2.4 (A Colored version of Turán’s Theorem) An n vertex graph
with the maximum number of r-colored-edges that does not contain Kki

of
color i as a subgraph is TR(k1,k2,...,kr)−1(n).

Proof: Define T := TR(k1,k2,...,kr)−1(n). We first show a coloring of T that
satisfies the property. Then we show tR(k1,k2,...,kr)−1(n) edges is already the
maximum.

Let G be an r-edge-colored complete graph with R(k1, k2, ..., kr)− 1 ver-
tices that does not contain any monochromatic Kki

of color i, 1 ≤ i ≤ r. The
graph G exists by the definition of Ramsey number. We now color the edges
between partition i and j of T according to the color of eij in G. It is clear
that T does not contain any monochromatic Kki

of color i.
We now show that there is no graph with more edges than T which satis-

fies the property. Assume, for a contradiction, that H is a graph with more
edges than T . By Turán’s theorem, H contains KR(k1,k2,...,kr) as a subgraph.
But by definition of the Ramsey number, there is at least one monochromatic
Kki

of color i as a subgraph of H. �

Theorem 2.5 RRn(2, k1, k2, ..., kr) =
1

2(R(k1, k2, ..., kr)− 1)
n2 + O(n), ki ≥

2.
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Proof: We proceed with the same argument as theorem 2.3 and calculate
the number of “no edges” in TR(k1,k2,...,kr)−1(n).

RRn(2, k1, k2, ..., kr) =

(
n

2

)
− tR(k1,k2,...,kr)−1(n)

= (1− R(k1, k2, ..., kr)− 2

R(k1, k2, ..., kr)− 1
)

(
n

2

)
+ O(n)

=
n2

2(R(k1, k2, ..., kr)− 1)
+ O(n). �

3 Bounds for RRn(3, 3, ..., 3)

The author fails to find the exact answer. In this section, we show upper
bounds and lower bounds for RRn(3; r), r ≥ 3 (defined below).

Definition: RRn(k; r) := RRn(k, k, ..., k︸ ︷︷ ︸
r times

).

Definition: R(k; r) := R(k, k, ..., k︸ ︷︷ ︸
r times

).

3.1 Upper Bounds for RRn(3, 3, ..., 3)

We provide examples of a “good” edge-coloring of Kn for an upper bound of
RRn(3; r).

Theorem 3.1 RRn(3; r) ≤ 1

6(R(3; r − 1)− 1)2
n3 + O(n2), r ≥ 2.

Proof: Let G be a (r−1)-edge-colored complete graph with R(3; r−1)−1
vertices that does not contain any monochromatic triangles. G is well de-
fined by the definition of R. We now divide the graph Kn into R(3; r−1)−1
partitions where the size of each partition is differed at most one. We color
the edges between partition i and j of Kn according to the color of eij of G
and color the edges in each partition with the one color left. As a result,
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RRn(3; r) ≤ sum of the number of triangles in each partition of Kn

≤ (R(3; r − 1)− 1)

(
d n

R(3;r−1)−1
e

3

)
=

n3

6(R(3; r − 1)− 1)2
+ O(n2). �

We state the following bounds as a corollary.

RRn(3; 2) ≤ n3

24
+ O(n2), since R(3) = 3.

RRn(3; 3) ≤ n3

150
+ O(n2), since R(3, 3) = 6.

RRn(3; 4) ≤ n3

1536
+ O(n2), since R(3, 3, 3) = 17.

RRn(3; 5) ≤ n3

15000
+ O(n2), since R(3, 3, 3, 3) ≥ 51.

RRn(3; 6) ≤ n3

155526
+ O(n2), since R(3, 3, 3, 3, 3) ≥ 162.

Note that this bound for RRn(3; 2) is the actual value mentioned in the first
section. Also the bound for RRn(3; 3) was mentioned before by Giraud.
The following famous result of the lower bound for R(3; r) could be used to
help in the calculation of the upper bounds of RRn(3; r).

Theorem 3.2 (Chung 1973) R(3; r) ≥ 3R(3; r− 1) + R(3; r− 3)− 3, r ≥ 4.

3.2 Lower Bounds for RRn(3, 3, ..., 3)

Theorem 3.3 Assume r ≥ 3 and RRn(3; r − 1) ≥ Ar−1n
3 − Br−1n

2, n ≥ 1
then

RRn(3; r) ≥ Arn
3 −Brn

2,

where Ar :=
1

(1 + 3
√

2
r

)

Ar−1

r2
and Br := max {Ar, Br−1}.

Proof: Assume RRn(3; r − 1) ≥ Ar−1n
3 + Br−1n

2.
We prove the theorem by using induction on the number of vertices, n.

Base case: n := 1.
Arn

3 −Brn
2 ≤ Arn

3 − Arn
2 = 0. We hence verify the base case.

Induction step:
Consider a vertex v ∈ Kn.
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Let Ci be the set of vertices joined to v by an ith-colored-edge, 1 ≤ i ≤ r.
Let Vi := |Ci|, 1 ≤ i ≤ r.
Let xi be the number of ith-colored-edges amongst the vertices in the set

Ci.

We break our induction down into 2 cases.

Case 1: x1 + x2 + · · ·+ xr > 3Arn
2.

RRn(3; r) > 3Arn
2 + RRn−1(3; r)

≥ 3Arn
2 + Ar(n− 1)3 −Br(n− 1)2 by induction assumption

= Arn
3 + 3Arn− Ar −Br(n− 1)2

> Arn
3 −Brn

2.

Case 2: x1 + x2 + · · ·+ xr ≤ 3Arn
2.

We first assume, each set Ci has only (r − 1)-colored-edges (except ith

color). We obtain the minimum monochromatic triangles. We later subtract
by xiVi, the number of nonmonochromatic triangles xi can create in Ci. This
leads to an inequality:

RRn(3; r) ≥ (Ar−1V
3
1 −Br−1V

2
1 − x1V1) + (Ar−1V

3
2 −Br−1V

2
2 − x2V2)

+... + (Ar−1V
3
r −Br−1V

2
r − xrVr).

= Ar−1(V
3
1 + V 3

2 + ... + V 3
r )−Br−1(V

2
1 + V 2

2 + ... + V 2
r )

−(x1V1 + x2V2 + ... + xrVr).

To complete the induction, we need to show that

Ar−1(V
3
1 +V 3

2 +...+V 3
r )−Br−1(V

2
1 +V 2

2 +...+V 2
r )−(x1V1+x2V2+...+xrVr) ≥

Arn
3 −Brn

2.

However, by the definition of Br, we know Brn
2 ≥ Br−1(V

2
1 +V 2

2 +...+V 2
r ),

it is enough to show that

f(V1, V2, .., Vr, x1, x2, ..., xr)
:= Ar−1(V

3
1 + V 3

2 + ... + V 3
r )− (x1V1 + x2V2 + ... + xrVr)− Arn

3 ≥ 0,
under conditions: V1 +V2 + ...+Vr = n−1 and x1 +x2 + ...+xr ≤ 3Arn

2.

Let V1 := tn where 0 ≤ t ≤ 1.
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The minimum of f occurs when V2 = V3 = ... = Vr and x1 = 3Arn
2.

After substituting these conditions in f , we now only need to show:

{[t3 + ( 1−t
r−1

)3(r − 1)]Ar−1 − 3Art− Ar}n3 ≥ 0.

Or showing that g(t) := t3 + (
1− t

r − 1
)3(r − 1)− 3t + 1

r(r + 3
√

2)
≥ 0.

We find t∗ such that g′(t∗) = 0 (using Maple program, t∗ is in term of r).
Then we show that g(t∗) ≥ 0 (by finding the root of r after plugging in t∗ in
g). Since both g(0) and g(1) are also positive, we complete the induction of
case 2 and finish the proof of the theorem. �

Corollary 3.4 RRn(3; 3) ≥ 1

522
n3 − 1

4
n2 for n ≥ 1.

Proof: From the result in section 1, RRn(3; 2) ≥ n3

24
− n2

4
. The statement

follows directly from theorem 3.3.
The final result shows the connection between minimum number of Schur

triples and the problem in this section. More information about Schur Triples
can be found in [11] and [9].

Corollary 3.5 The minimum number, over all r-colorings of [1, n], of monochro-
matic Schur Triples, x + y = z, is of order n2.

Proof: An upper bound follows from the fact that the number of triples
of [1, n] is bn2

4
c which is of order n2. On the other hand, the number of

monochromatic triples could not have an order smaller than n2. Otherwise
we can create a graph G with the order of monochromatic triangles smaller
than n3 using the color translation method. This G gives a contradiction
to theorem 3.3. Note that we can define the color translation of the triple
(i, j, i + j) from [1, n] to the triangle vIvJvK of the graph G by a relation:
(eIJ ⇐⇒ i, eJK ⇐⇒ j and eIK ⇐⇒ i + j) or (eIJ ⇐⇒ j, eJK ⇐⇒ i and
eIK ⇐⇒ i + j). We also see that each Schur triple corresponds to at most
2n triangles. �

4 Final Remark

It is possible to extend the method in section 3 for the answer of RRn(3, 4).
However the result might be “weak” compared to the more sophisticated “a
system of weights”.
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