MATH 373: CLASS 19

1. Exercise

1) Show each of the following initial-value problems has a unique solution.

a)
$$y' = y * cos(t), 0 \le t \le 1, y(0) = 1.$$

b)
$$y' = \frac{2}{t}y + t^2e^t$$
, $1 \le t \le 2$, $y(1) = 0$.

2) Given $y' = 1 + (t - y)^2$, $2 \le t \le 3$, y(2) = 1 with $h = \frac{1}{2}$.

a) Use Euler's Method to approximate $y(\frac{5}{2})$ and y(3).

b) Find Lipschitz constant.

c) In addition, suppose we know the solution $y(t) = t + \frac{1}{1-t}$. Find $\max_{t \in [2,3]} |y''(t)|$.

d) Find an error bound at $t = \frac{5}{2}$ and t = 3.

e) Compare an actual error with an error bound.

Date: August 8, 2007.