MATH 373: CLASS 15

1. Exercise

- 1) In section 4.1 we learnt how to derive the approximation formula for $f'(x_0)$. This problem will guide you to derive the approximation formula for $f''(x_0)$.
 - a) Write the third degree Taylor polynomial of f(x) about $x = x_0$.
 - b) In stead of substitute h by -h in a).
 - c) Add the equation in part a) and b) to get rid of $f'(x_0)h$ term.
 - d) Solve the equation in term of $f''(x_0)$.
- 2) Assume $M=N(h)+K_1*h+K_2*h^2+K_3*h^3+....$ Given $N(h)=1.040810, N(\frac{h}{2})=1.020201, N(\frac{h}{4})=1.01005.$ Find $N_3(h)$.

(This problem I tried to approximate the value of $f(x) = e^x$ at x = 0 by using the value of f(0.04), f(0.02) and f(0.01). $N_3(h)$ supposed to be really closed to 1).

 $Date \hbox{: August 1, 2007.}$