MATH 373: SOLUTION TO PRACTICE PROBLEM CLASS 19

1. Solution

1) For the uniqueness solution, we claim theorem 5.4 page 252.

Let f(t,y) be y'(t).

We need to show 1) f(t, y) continuous.

2) f(t,y) satisfies a Lipschitz condition in variable y on the given domain.

- a) f(t, y) = y * cos(t).
- 1) Since g(t,y)=y is a continuous function and $h(t,y)=\cos(t)$ is also a continuous function.

So f(t,y) , which is a product of continuous functions, is continuous.

2) We will apply theorem 5.3 (the condition to be Lipschitz) here. We have $\left|\frac{\delta f}{\delta y}\right|=|cos(t)|\leq 1.$

So f satisfies Lipschitz condition with Lipschitz constant 1.

- b) $f(t,y) = \frac{2}{t} * y + t^2 e^t$.
- 1) Since $g(t,y)=\frac{2}{t}y$ is a continuous function on $1\leq t\leq 2$ and $h(t,y)=t^2e^t$ is also a continuous function.

So f(t,y), which is a product of continuous function, is continuous.

2) We will apply theorem 5.3. here. We have $\left|\frac{\delta f}{\delta y}\right| = \left|\frac{2}{t}\right| \leq 2, \ 1 \leq t \leq 2.$

So f satisfies Lipschitz condition with Lipschitz constant 2.

2) a) The approximation using Euler Method:

Let
$$f(t,y) = y'(t) = 1 + (t-y)^2$$
.

Approximation term = y + hy'.

$$= y + hf(t, y).$$

$$= y + h(1 + (t - y)^2).$$

So we get the recurrence of the approximations:

$$w_i = w_{i-1} + h(1 + (t_{i-1} - w_{i-1})^2).$$

In this problem $t_0 = 2$, $t_1 = 2.5$, h = 0.5, $w_0 = y_0 = 1$.

You plug everything in you get

$$y(\frac{5}{2}) \approx w_1 = 2.$$

$$y(3) \approx w_2 = 2.625.$$

b) Lipschitz condition:

$$\left| \frac{\delta f}{\delta y} \right| = |(2(t-y)(-1))| \le 2 * (3-1) = 4.$$

Lipschitz constant = 4.

The above is a bit tricky since we don't know how big y could be. But we know y is increasing and y(3) is not so big. so max |t - y| = max(t) - min(y) = 3 - 1.

c)
$$y(t) = t + \frac{1}{1-t}$$
.

Then
$$y'(t) = \frac{1}{(1-t)^2}$$
.

and
$$y''(t) = \frac{2}{(1-t)^3}$$
.

so
$$\max_{t \in [2,3]} |y''(t)| = 2$$
 at $t = 2$.

d) Error bound = $\frac{hM}{2L}(e^{L(t_i-a)}-1)$, (Theorem 5.9 in the book).

We have h = 0.5, L = 4, M = 2.

At
$$t = \frac{5}{2}$$
, error bound = $\frac{0.5*2}{2*4}(e^{4*0.5} - 1) \approx 0.798632$.

At
$$t = 3$$
, error bound = $\frac{0.5*2}{2*4}(e^{4*1} - 1) \approx 6.699768$.

(This formula did not give a really good error bound).

e) The exact solution to this problem is $y(t) = t + \frac{1}{1-t}$.

So
$$y(\frac{5}{2}) = \frac{5}{2} + \frac{1}{(1 - \frac{5}{2})} \approx 1.83333.$$

and
$$y(3) = 3 + \frac{1}{1-3} = 2.5$$
.

Actual Error at $t = \frac{5}{2}$ is |2 - 1.83333| = 0.1666667.

Actual Error at t = 3 is |2.625 - 2.5| = 0.125.

The error bound is pretty far off.