NUMBER THEORY: CLASS 5

1. Exercise

1) In this problem, we will rediscover the statement of the Prime Number Theorem using Maple Program:

I) Command Lines

Some useful commands about primes.

i) isprime(n):

input: number n

output: true if n is a prime and false otherwise

try: isprime(2532490438063);

ii) ithprime(n)

input: number n output: n^{th} prime

try: ithprime(4);

iii) numtheory[pi](n)

input: number n

output: the number of prime less or equal to n

try: numtheory[pi](100);

II) Other functions:

i) To find value of $\frac{x}{\log(x)}$ try

evalf(10/ln(10));

ii) To find value of $Li(x) := \int_2^x \frac{1}{ln(t)} dt$ try $evalf(int(1/ln(t), t = 2..10^{14}));$

Date: Friday, September 12, 2008.

Problem

a) Fill up the numbers in the table below:

n	$\pi(n)$	$\frac{n}{ln(n)}$	$\frac{n}{\pi(n)ln(n)}$	Li(n)	$\frac{Li(n)}{\pi(n)}$
10					
10^{3}					
10^9					
10^{15}					
10^{21}					

FIGURE 1

- b) Which function , $\frac{n}{\log(n)}$ or Li(n), is a better estimation of $\pi(n)?$
- 2) Show there are infinitely many prime of the form 6n + 5.
- 3) Show that $\sqrt{2} + \sqrt{3}$ is irrational.