NUMBER THEORY: CLASS 13

1. Exercise

- 1) Use Fermat's little theorem to find the residue of $473^{38} \mod 5$.
- 2) Show the reverse of Fermat's little theorem is not true. Find a number a and a composite number n where $\gcd(a,n)=1$ such that $a^{n-1} \neq 1 \mod n$.
- 3) Show that $n^7 n$ is divisible by 42 for all positive integers n.
- 4) Show $1^p + 2^p + 3^p + \dots + (p-1)^p \equiv 0 \pmod{p}$ for any odd prime p.

Date: Tuesday, October 7, 2008.