SOLUTION 8

1. Solution

Problem 1

Most of people got this problem right. We make a bijective according to the algorithm discussed during the class.

Problem 2

First, the generating function of $p(n|\text{distinct parts and each part} \equiv \pm 1 \mod 3)$.

$$F(q) = (1+q)(1+q^2)(1+q^4)(1+q^5)... = \prod_{i=0}^{\infty} (1+q^{3i+1})(1+q^{3i+2}).$$

Second, the generating function of $p(n|\text{parts are} \equiv \pm 1 \mod 6)$.

$$= (1+q+q^2+q^3...)(1+q^5+q^{10}+...)(1+q^7+q^{14}+...)(1+q^{11}+q^{22}+...)...$$

$$= \prod_{i=0}^{\infty} \frac{1}{(1-q^{6i+1})(1-q^{6i+5})}.$$

To show: F(q) = G(q)

$$\begin{split} F(q) &= \prod_{i=0}^{\infty} (1+q^{3i+1})(1+q^{3i+2}) \\ &= \prod_{i=0}^{\infty} (1+q^{3i+1})(1+q^{3i+2}) \prod_{i=0}^{\infty} \frac{(1-q^{3i+1})(1-q^{3i+2})}{(1-q^{3i+1})(1-q^{3i+2})} \\ &= \prod_{i=0}^{\infty} (1-q^{6i+2})(1-q^{6i+4}) \prod_{i=0}^{\infty} \frac{1}{(1-q^{3i+1})(1-q^{3i+2})} \\ &= \prod_{i=0}^{\infty} (1-q^{6i+2})(1-q^{6i+4}) \prod_{i=0}^{\infty} \frac{1}{(1-q^{6i+1})(1-q^{6i+4})(1-q^{6i+2})(1-q^{6i+5})} \\ &= \prod_{i=0}^{\infty} \frac{1}{(1-q^{6i+1})(1-q^{6i+5})} \\ &= G(q) \quad \Box. \end{split}$$

Problem 3

Date: Friday, November 28, 2008.

- a) $p(n|\text{at most 2 parts}) = \lfloor \frac{n}{2} \rfloor + 1$.
- b) $p(n| \text{ parts in } \{1,2\}) = \lfloor \frac{n}{2} \rfloor + 1.$

Problem 4

After making a table discussed in the class, A = set of all positive integers but multiples of 3.

Problem 5

Let $f(P) = 13P + 9 \mod 27$.

Apply this function to the 1-letter block "HELP ME", we have the ciphertext "THRPXDH".