SOLUTION 5

1. Solution

Problem 1

Proof by contrapositive:

Assume n is composite.

To show: (n-1)! + 1 not congruence to $0 \mod n$.

We write n = ab where a > 1 and b > 1.

It is clear that a|(n-1)!. Thus a not divide (n-1)!+1 since a>1. As a result n not divide (n-1)!+1. \square

Problem 2

The Pollard function can factor for n=5 and 6. While the built-in function *ifactor* can factor for n=5,6 and 7.

I am a bit disappointed. But this is not the first time Maple beats me.

Problem 12 page 221

 $2^{16} \equiv 1 \mod 17$ by Fermat's Little Theorem. $(2^{16})^{62500} \equiv 1^{62500} \mod 17$. Hence $2^{1000000} \equiv 1 \mod 17$. The least positive residue is 1.

Problem 22 page 221

People show me some different ways to do this problem. I will try to make use of the corollary of Fermat's little theorem. $a^p \equiv a \mod p$ for all integer a.

To show: $30|(n^9 - n)$

Date: Tuesday, October 21, 2008.

We show

- i) $2|(n^9 n)$ ii) $3|(n^9 n)$
- iii) $5|(n^9-n)$.
- i) We will repeatedly apply: $n^2 \equiv n \mod 2$. We have $n^9 = (n^2)^4(n) \equiv n^4 n \equiv n^2(n) \equiv n(n) \equiv n \mod 2$. This shows $2|(n^9-n)$.
- ii) Similarly $n^3 \equiv n \mod 3$. We have $n^9 \equiv (n^3)^3 \equiv n^3 \equiv n \mod 3$. This shows $3|(n^9-n)$.
- iii) Also $n^5 \equiv n \mod 5$. We have $n^9 \equiv (n^5)(n^4) \equiv n(n^4) = n^5 \equiv n \mod 5$. This shows $5 | (n^9 n)$. \square

Problem 23 page 221

We start from LHS:
$$\textstyle\sum_{k=1}^{p-1} k^{p-1} \equiv \sum_{k=1}^{p-1} 1 \bmod p \text{ by Fermat's little theorem}.$$

$$\equiv (p-1) \mod p$$
.

$$\equiv -1 \mod p$$
. \square