SOLUTION 4

1. Solution

Problem 1

Proof by contra positive:

Assume $n \neq 2^k$ for any positive integer k.

To show: $2^n + 1$ is not a prime ≥ 5 .

We have that n has an odd factor, say d.

(Or else $n = 2^0$ which gives $2^n + 1 = 2^{2^0} + 1 = 3$ (a prime less than 5)).

Now n can be written as $n = d \cdot n'$.

Let $x = 2^{n'}$.

We can now factor $2^n + 1$ as follow:

 $2^n - 1 = 2^{n' \cdot d} + 1 = x^d + 1 = (x+1)(x^{d-1} - x^{d-2} + \dots + 1)$ since d is

x+1>1, since $x\geq 1$. We then have 2^n+1 is composite.

Problem 2

- a) $341 = 11 \cdot 31$
- b) $2^{10} 1 = 1023 \equiv 0 \mod 341$
- $\Rightarrow 2^{10} \equiv 1 \mod 341.$
- c) $(2^{10})^{34} \equiv 1^{34} \mod 341$ $\Rightarrow 2^{340} \equiv 1 \mod 341$
- $\Rightarrow 2^{341} \equiv 2 \mod 341.$

Problem 3

- a) $x \equiv y \mod m$
- $\Rightarrow 3x \equiv 3y \mod m$
- $\Rightarrow 3x + 2 \equiv 3y + 2 \mod m$.
- b) $x \equiv y \mod m$
- $\Rightarrow x^3 \equiv y^3 \mod m$

Date: Friday, October 10, 2008.

$$\Rightarrow x^3 - x \equiv y^3 - y \mod m$$
.

c) Assume
$$P(x) = \sum_{i=0}^{n} a_i x^i$$
.
 $x \equiv y \mod m$
 $\Rightarrow x^i \equiv y^i \mod m$, for all non-negative integer i

$$\Rightarrow a_i x^i \equiv a_i y^i \mod m$$
, for all non-negative integer i

$$\Rightarrow \sum_{i=0}^{n} a_i x^i \equiv \sum_{i=0}^{n} a_i y^i \mod m$$
$$\Rightarrow P(x) \equiv P(y) \mod m.$$

$$\Rightarrow P(x) \equiv P(y) \mod m$$
.

Problem 4

First, we simply the bases.

Since
$$2222 \equiv 3 \pmod{7}$$
 and $5555 \equiv 4 \pmod{7}$, we have $2222^{5555} + 5555^{2222} \equiv 3^{5555} + 4^{2222} \pmod{7}$.

Since
$$3^6 \equiv 1 \pmod{7}$$
 and $3^5 \equiv 5 \pmod{7}$, we have $3^{5555} = (3^6)^{925}(3^5) \equiv 1^{625}5 \mod{7} \equiv 5 \pmod{7}$.

Similarly
$$4^3 \equiv 1 \pmod{7}$$
 and $4^2 \equiv 2 \pmod{7}$, we have $4^{2222} = (4^3)^{740}(4^2) \equiv 1^{740}2 \pmod{7} \equiv 2 \pmod{7}$.

Therefore
$$3^{5555} + 4^{2222} \equiv 5 + 2 \pmod{7} \equiv 0 \pmod{7}$$
.

Problem 5

I was hoping to use the method we learn to solve linear diophantine equation to this problem.

a) Solve $5x \equiv 4 \mod 3$. We solve the equation 5x + 3y = 4.

First find qcd(5,3) using Euclidean algorithm.

$$5 = 1(3)+2$$

 $3 = 1(2)+1$

$$2 = 2(1)$$
.

Second we write 1 as a linear combination of 5 and 3.

$$1 = 3 - 1(2)$$
.
Then $1 = 3-1(5-3)$.

$$\Rightarrow 1 = -(5) + 2(3).$$

Third, we multiply 4 through the whole equation. 4 = -4(5) + 8(3).

Therefore x = -4 + 3k for any integer k.

b) Solve $7x \equiv 6 \mod 5$.

We solve similarly and find x = -2 + 5k for any integer k.

Problem 6

Everyone is doing well in this problem.

 $3523 = 271 \cdot 13.$ $2342409 = 780803 \cdot 3.$ $120938091 = 18299 \cdot 6609.$ $32804989 = 36901 \cdot 889.$

Problem 22 page 150

To show: $4^n \equiv 1 + 3n \mod 9$ for a positive integer n.

Proof by induction:

Base case: n = 1. $4^1 = 4$ and 1+3(1) = 4. so $4^n \equiv 1 + 3(n) \mod 4$ is true for n = 1.

Induction step: assume the statement is true for all k where $1 \le k \le n-1$

To show: the statement is true for k = n.

We start on the left hand side and try to convert it to the right hand side.

 $4^n = 4^{n-1}(4) \equiv (1+3(n-1))4 \mod 4$ by induction hypothesis. $\equiv 4+12n-4 \mod 9$ $\equiv 3n \mod 9$. \square .

Problem 8 page 157

- 8a) The inverse of 2 mod 13 is 7.
- 8b) The inverse of 3 mod 13 is 9.

Problem 4a) page 164

We use Chinese Remainder Theorem.

$$\begin{split} M &= 11 \cdot 17 = 187. \\ M_1 &= \frac{187}{11} = 17. \\ M_2 &= \frac{187}{17} = 11. \\ M_1^{-1} \mod 11 = 2. \\ M_2^{-1} \mod 17 = 14. \\ \\ x &= a_1 M_1 M_1^{-1} + a_2 M_2 M_2^{-1} \pmod{187} \\ &= 4(17)(2) + 3(11)(14) \pmod{187} \\ &= 598 \pmod{187} \\ &= 37. \end{split}$$

Therefore the solutions of these system of equations are 37 + 187k for any integer k.