SOLUTION 3

1. Solution

Problem 1 To show there are infinitely many primes of the form 6n+5.

Proof:

Note:
$$(6n+1)(6m+1) = 36mn+6n+6m+1 = 6(6mn+n+m)+1$$
. $(6n+3)(6m+3) = 36mn+6n+6m+9 = 6(6mn+n+m+1)+3$. $(6n+1)(6m+3) = 36mn+6n+6m+3 = 6(6mn+n+m)+3$.

From the calculation above, the product of numbers in the form 6n + 1 and 6n + 3 will also be in the form 6n + 1 or 6n + 3.

We prove by contradiction. Assume there are only finite prime of the form 6n + 5.

Let denote these prime by p_i . We have that $p_1 = 5, p_2 = 11, p_3 = 23, ..., p_k$.

Consider $Q := 6p_2p_3...p_k + 5$.

Case 1: Q is a prime. We have a new prime of the form 6n + 5. Contradiction.

Case 2: Q is composite. Then the prime factors of Q are odd numbers and must be in form 6n + 1, 6n + 3 or 6n + 5.

However at least one of the prime factor of Q must be in the form 6n + 5 since the product of the numbers of the form 6n + 1 and 6n + 3 must only be in the form 6n + 1 or 6n + 3.

On the other hand, the prime of the form 6n + 5 could not divide Q. Contradiction again for case 2. \square

Date: Thursday, October 2, 2008.

Problem 2 Set $a := \lceil \sqrt{n} \rceil$. Then check whether $\sqrt{a^2 - n}$ is an integer.

If yes then we can factor n as n = (a - b)(a + b) where $b = \sqrt{a^2 - n}$.

If no, increase a by 1 and repeat the step.

- a) $143 = 11 \cdot 13$.
- b) $46009 = 139 \cdot 331$.
- c) $3200399 = 1601 \cdot 1999$.

Problem 3

My bad, the problem is incorrect. I already corrected it and put in HW4.

Problem 17 page 132

To show the final digit of $2^{2^n} + 1$ is 7 for $n \ge 2$.

First show that the final digit of 2^{2^n} is 6 for $n \geq 2$ by using induction.

Base case: $2^{2^2} = 2^4 = 16$ which indeed has the last digit 6.

Induction step: Assume 2^{2^k} has the last digit 6 for all k < n.

Now consider 2^{2^n} ,

 $2^{2^n}=2^{(2^{n-1})2}.$ Since $2^{2^{n-1}}$ has the final digit 6, $2^{(2^{n-1})2}$ also has the final digit 6.

Hence $2^{2^n} + 1$ has the final digit 7. \square

Problem 20 page 132

Find all the prime of the form $2^{2^n} + 5$.

We want to show that $2^{2^n} + 5$ is prime when n = 0 and otherwise has 3 as a factor.

 $2^{2^0} + 5 = 7$ which is prime. Now we consider case when n > 1.

We see that $2^2 \equiv 1 \mod 3$.

Therefore $2^{2^n} \equiv 2^{(2)2^{n-1}} \equiv 1^{2^{n-1}} \equiv 1 \mod 3$.

So
$$2^{2^n} + 5 \equiv 1 + 5 \equiv 0 \mod 3$$
. \square