NUMBER THEORY: HOMEWORK 6

Homework due on Tuesday October 28.

1. Problems

1) Given gcd(b, n) = 1 and a and c are positive integers.

Prove: if $p \mid (b^n + 1)$ then either

- i) $p \mid (b^d + 1)$ for some proper divisor d of n for which n/d is odd, or
- ii) $p \equiv 1 \mod 2n$.

(Note: This is one of the harder problem. Feel free to ask me for a hint.)

2) Use the result in problem 1 to conclude that if $p \mid 2^{2^n} + 1$ then $p \equiv 1 \mod 2^{n+1}$.

Double check the above statement with the actual factor of Fermat number when n = 5, 6 and 7.

- 3) Let let n be an odd number > 2. Show that n divides at least one of the elements in the set $\{2^2 - 1, 2^3 - 1, 2^4 - 1, ..., 2^{n-1} - 1\}$. (Extra point if you can prove without using Euler's theorem.)
- 4) Let n be a pseudoprime to the base b. Show that n is also a pseudoprime to the base -b and to the base b^{-1} .
- 5) Write a brute force program in Maple to find all the Carmichael numbers \leq 5000. You can download outline of the program from my web site.

Also do problem 10 page 236 from the book.

Date: Tuesday, October 21, 2008.