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Abstract

When I did my thesis defense presentation eleven years ago, I chose to
present the subject of Ramsey theory from the moment calculus perspective.
I don’t think I did too well there (although I passed). Time has passed and
this is the chance to redeem myself. Here we relate Ramsey numbers, R(k, k),
with the method of moment calculus by checking the distribution of numbers of
monochromatic complete subgraph of k vertices in the random graphs. We also
review Delaporte distribution’s connection that was mentioned in the paper
by Robertson, Cipolli and Dascalu.

1 Introduction to Ramsey Numbers

Ramsey theory is a fascinating but extremely difficult subject started by British
mathematician Frank Ramsey in the early 1900. But it was Paul Erdös who pop-
ularize the field. Although he had passed away in 1996, this subject is still alive
and gives rise to many interesting research projects. In this article, we will restrict
ourselves only to Ramsey graph (one of the Super-Six theorems, [3]).

Definition (Ramsey Numbers). R(k, l) is the smallest number of vertices of complete
graph which each edge colored either red or blue such that no matter how the edges
are colored, it must contain either (monochromatic) red Kk or blue Kl.

Examples:

R(3, 3) = 6, R(4, 4) = 18, 43 ≤ R(5, 5) ≤ 49, 102 ≤ R(6, 6) ≤ 165.
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The exact numbers of R(k, k), k ≥ 3 are very hard to determine because of the

gigantic possibilities of edge-colorings, 2(n
2) ways to color edges.

The asymptotic behavior of R(k, k) is a famous open problem in combinatorics.
There is even a monetary prize of $250 for the solution. Paul Erdös used the first
moment E[X] to obtain a lower bound of lim

k→∞
R(k, k).

Theorem 1. √
2
k
≤ R(k, k) ≤ 4k, k ≥ 3.

Proof. For the upper bound:

Claim: R(m,n) ≤
(
m+n
n

)
.

We show the claim by applying an induction on m+ n. First we see that

R(m,n) ≤ R(m− 1, n) +R(m,n− 1).

Then it follows from the induction assumption that

R(m,n) ≤ R(m− 1, n) +R(m,n− 1) ≤
(
m+ n− 1

n

)
+

(
m+ n− 1

n− 1

)
=

(
m+ n

n

)
.

The upper bound follows immediately from the claim,

R(k, k) ≤
(

2k

k

)
=

(2k)!

k!k!
≈ 22kk2k

kk · kk
= 4k.

For the lower bound (Erdös, 1947):

We use the property that

1− E[X] ≥ 0→ P (X = 0) > 0.

Here we let the random variable X := Xk be the number of mono-chromatic subgraph
of size k of the complete graph of n vertices. We want to find n such that E[X] < 1
then it follows that R(k, k) > n since there must be some random variable (random
edge-coloring graph) that does not contain monochromatic red Kk or monochromatic
blue Kk.

E[X] =
∑

X · p(X) =
(n)k
k!
· 2

2(k
2)
≈ nk

k!
· 2

2(k
2)
.

If n ≤
√

2
k

then

E[X] ≤ 2k
2/2 · 2

k! · 2k2/2−k/2
=

2k/2+1

k!
< 1 for k ≥ 3.
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Remark that the precise bound from this idea is

R(k, k) ≥ 1√
2e
k2k/2(1 + o(1)), k →∞.

The bound can be improved by using more sophisticated technique called Lovasz
local lemma, see [1],

R(k, k) ≥
√

2

e
k2k/2(1 + o(1)), k →∞.

Prize Money Problems (Ron Graham)

1. ($100) Does lim
k→∞

R(k, k)
1
k exist?

2. ($250) If the limit exists, what is it?

The idea that Erdös used for the lower bound can be extended by the method called
moment calculus.

2 Moment Calculus of Ramsey Graphs

Let S be k-subsets of {1, 2, . . . , n} and let XS be an indicator variable.

XS =

{
1 if subgraph of Kn induced by S is monochromatic

0 otherwise.

Recall that X is the number of monochromatic Kk of the complete edge-coloring
graph. Then

X =
∑
S

XS.

First moment:

E[XS] =
2

2(k
2)
,

E[X] =
2

2(k
2)
·
(
n

k

)
.
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Second moment:

E[X2] = E

[
(
∑
S1

XS1)(
∑
S2

XS2)

]
=
∑

[S1,S2]

E[XS1XS2 ].

We need to look at how S1 and S2 interact with each other.

Example: For k = 3,

E[X2] =
2

23
· 2

23
· (n)6

3!3!
+

2

23
· 2

23
· (n)5

2!2!1!
+

2

25
· (n)4

2!1!1!
+

2

23
· (n)3

3!
.

For k = 4,

E[X2] =
2

26
· 2

26
· (n)8

4!4!
+

2

26
· 2

26
· (n)7

3!3!1!
+

2

211
· (n)6

2!2!2!
+

2

29
· (n)5

3!1!1!
+

2

26
· (n)4

4!
.

In fact, we can write the formula of second moment for general k in term of the sum
(but not the closed form though).

E[X2] =
2

2(k
2)
· 2

2(k
2)
·(n)2k
k!k!

+
2

2(k
2)
· 2

2(k
2)
· (n)2k−1
1!(k − 1)!(k − 1)!

+
k∑
i=2

2

22(k
2)−(i

2)
· (n)2k−i
i!(k − i)!(k − i)!

.

For higher moment with fixed k, we need computer to do the job for us. There are
too many ways the objects can interact with each other. The program I wrote can
calculate up to the fifth moment for some small k.

One nice thing about this calculation is that you can check the correctness of your
formula by comparing the value for each (small k) with the moment from the different
method, i.e.

E[Xr] =
∞∑
i=0

irP [X = i].

3 Numbers of Monochromatic Complete Subgraphs:

Normal distribution for “big n”, Poisson distri-

bution for “small n”

The following results come from Maple program.

Theorem 2. The leading term of E[(X − µ)2] is

1

2
· 1

(k − 3)!2
· n

2k−3

22(k
2)−2

.
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The leading term of E[(X − µ)3] is

1

(k − 3)!3
· n

3k−5

23(k
2)−3

.

The leading term of E[(X − µ)4] is

3

4
· 1

(k − 3)!4
· n

4k−6

24(k
2)−4

.

The leading term of E[(X − µ)5] is

5 · 1

(k − 3)!5
· n

5k−8

25(k
2)−5

.

With these results, we’ve already seen an asymptotic normality of X when n� k.

Corollary 3. As k → ∞ and n ≥
√

2k

e
2

k
2 (1 + o(1)), the random variable X is

normally distributed.

Remark: The condition of n is needed to make the leading term significance.

Proof. We show that the standardized moments cm :=
E[(X − µ)m]

V ar
m
2

agree with the

coefficients of the moment generating function of standard normal distribution e
t2

2

i.e. 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, . . . .

From theorem 2, we see

c1 =
0√
V ar

= 0,

c2 = 1,

c3 =
n3k−5

n3k−9/2/(2
√

2)
=

2
√

2√
n
→ 0 as n→∞,

c4 =
3

4
· 22 = 3.

c5 =
5n5k−8

n5k−15/2/(4
√

2)
=

20
√

2√
n
→ 0 as n→∞.

. . .

The other values can be conformed as well.
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The following is a complement of this result:

In [2], it was shown that Xk is asymptotically Poisson as k →∞ with condition

n ≤
√

2

e
k2k/2(1 + o(1)). That is

P (Xk = j) ≈ λje−λ

j!
, where λ =

(
n
k

)
2(k

2)−1
.

Remark. It is quite evidence that, asymptotically (k → ∞), X does not have

Poisson distribution through out. The leading term of V ar(X) is
1

2(k − 3)!2
· n

2k−3

22(k
2)−2

and
V ar(X)

E[X]
∼ k(k − 1)(k − 2)

(k − 3)!
· n

k−3

2(k
2)
. Hence, for a fixed k, k ≥ 4, and some “big

n”, n� k, V ar(X)� E[X]. (For Poisson distribution, V ar(X) = E[X].)

3.1 Almost Surely Property of R(k, k)

We will apply Chebyshev’s theorem for the almost surely property (the set of possible
exceptions may be non-empty, but it has probability zero) of R(k, k).

Theorem 4 (Chebyshev’s theorem). Let X be a non-negative discrete random vari-
able. Then

P (X = 0) ≤ V ar(X)

E[X]2
.

Theorem 5. For n ≥
√

2

e
k2k/2(1 + o(1)), as k →∞, P (X = 0)→ 0 almost surely.

Proof. From theorem 2, we have

V ar(X)

E[X]2
∼ k6

2n3
.

We then see that
V ar(X)

E[X]2
→ 0. The result follows from Chebyshev’s theorem.

4 Delaporte Distribution

In [4], the authors found the best fit for the distribution of X, the number of mono-
chromatic subgraph of size k of the complete graph of n vertices, to be Delaporte.
We discuss this distribution in this section.
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Definition (Delaporte distribution).

Let the moment generating function, mgf(X) = φ(t) := E[etX ]. We define Dela-
porte distribution by

mgf(D) =
eλ(e

t−1)

(1− β(et − 1))α
.

The motivation behind this is that D is a convolution of a Negative binomial random

variable with success probability
β

1 + β
and mean αβ and a Poisson random variable

with mean λ.

Proposition 6. The probability mass function of Delaporte distribution is

P (D = j) =

j∑
i=0

Γ(α + i)

Γ(α)i!

(
β

1 + β

)i(
1

1 + β

)α
λj−ie−λ

(j − i)!
.

It also follows that

µ = E[X] = λ+ αβ,

V ar(X) = E[(x− µ)2] = λ+ αβ(1 + β),

E[(X − µ)3] = λ+ αβ(1 + 3β + 2β2),

E[(X − µ)4] = 3λ2 + λ+ αβ(1 + β)(3αβ2 + 3αβ + 6β2 + 6β + 6λ+ 1),

· · ·

Proof. The probability mass function can be calculated from mgf(D).

The moment generating function for Poisson:

mgf(P ) =
∑
i

e−λλi

i!
eti

= e−λ
∑
i

(λet)i

i!

= eλ(e
t−1).
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The moment generating function for Negative Binomial:

mgf(NB) =
∑
i

Γ(α + i)

Γ(α) · i!
pi(1− p)αeti, where p =

β

1 + β

=
(1− p)α

[1− pet]α

=
1

[1 + β − βet]α

=
1

[1− β(et − 1)]α
.

Hence the mgf(D) is the product of mgf(P ) and mgf(NB). The probability mass
function of D is the convolution of Pr(P ) and Pr(NB).

The moments in the second part are directly calculated from the moment gener-
ating function.

5 Asymptotic/Non-asymptotic fit with Delaporte

distribution (?)

We will discuss the Delaporte distribution as the fit of X in three scenarios: k →∞
for “big n”, k →∞ for “small n” and small k.

5.1 Delaporte Fit as k →∞ for “big n”

In this section, we assume n ≥ 2k

e
· 2 k

2 . We already knows that X, the number

of mono. complete subgraphs, is normally distributed. We try to fit the normal
distribution of X to Delaporte distribution. We will solve for values of λ, α and
β in terms of n and k, then calculate the moment about the mean of Delaporte
distribution that arises from the parameters λ, α and β to see if it fits. First we solve
the parameters by matching the leading terms in proposition 6 and theorem 2:

λ+ αβ =
1

k!
· nk

2(k
2)−1

,

αβ2 =
1

2(k − 3)!2
n2k−3

22(k
2)−2

,

2αβ3 =
1

(k − 3)!3
n3k−5

23(k
2)−3

.
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Then we have:

β =
nk−2

2(k
2)−1
· 1

(k − 3)!
, α =

n

2
,

λ = E[X]− αβ =
nk

k! · 2(k
2)−1

[
1− k(k − 1)(k − 2)

2n

]
.

Remark. Assume n ∼ 2k

e
· 2 k

2 , we have

α =
n

2
=

k√
2e
· 2

k
2 , β =

(
k

e

)k−2
· 2

k
2

4
· 2

(k − 3)!
=
k

e
· 2

k
2

2
· e3√

2πk
=

e2

2
√

2π
·
√
k · 2

k
2 ,

λ =
2√
2πk

2
k
2 .

We see that, with this assumption, α� β � λ, as k →∞. This verifies the leading
terms that we assume earlier.

With this setting of α, β and λ, the Delaporte distribution (proposition 6) indeed
approaches the normal distribution, i.e. the leading terms (assume α � β � λ) of
the moments are

E[(X − µ)2] ∼ αβ2

E[(X − µ)3] ∼ 2αβ3

E[(X − µ)4] ∼ 3α2β4

E[(X − µ)5] ∼ 20α2β5

E[(X − µ)6] ∼ 15α3β6

E[(X − µ)7] ∼ 210α3β7

E[(X − µ)8] ∼ 105α4β8

E[(X − µ)9] ∼ 2520α4β9

E[(X − µ)10] ∼ 945α5β10

. . .

We note that the coefficient of (2k + 3)th moment is
(2k + 3)!

3(k!)2k
.

5.2 Delaporte Fit as k →∞ for “small n”

In [2], it was shown that X ∼ Poisson with λ = E[X] =

(
n
k

)
2(k

2) − 1
under the condition

that

n ≤
√

2

e
k2k/2(1 + o(1)).
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In theorem 3 of [4], the authors claimed, under different condition on n, that Dela-
porte distribution approaches Poisson. The idea is very interesting but the statement
is confusing (at least to me). Here I write my own version of this theorem using the
condition on n similar to [2].

Proposition 7. If D ∼ Delaporte(λ, α, β), and P ∼ Poisson(λ+αβ), thenmgf(D)→
mgf(P ) under the assumption:

αβ2 → 0.

Proof. We match the term of each moment of Delaporte distribution in proposition
6 with the asymptotic distribution of Poisson. Since in Poisson E[X] = V ar(X),
therefore

ED[X] = λ+ αβ

and
V arD(X) = λ+ αβ + αβ2

must equal. This results to the condition that αβ2 → 0. Under this condition, the
other higher moments of Delaporte fit the moments of Poisson perfectly as well.

Theorem 8. Given that n ≤ 1

e
k2k/2(1 + o(1)). Letting

β =
nk−2

2(k
2)−1
· 1

(k − 3)!
, α =

n

2
,

λ = E[X]− αβ =
nk

k! · 2(k
2)−1

[
1− k(k − 1)(k − 2)

2n

]
.

If D ∼ Delaporte(λ, α, β), and P ∼ Poisson(λ + αβ), then mgf(D)→ mgf(P ) as
k →∞.

Proof. For consistence, we define β, α and λ as in the subsection for “big n”. Then

αβ2 =
1

2(k − 3)!2
n2k−3

22(k
2)−2

≤ e3

π
· k

2

2k/2
→ 0 as k →∞.

We then apply proposition 7 to conclude the result.

5.3 Delaporte fit for small k

In [4], Robertson successfully fitted the Delaporte(α, β, λ) to the distribution of X
(obtained by simulation) for k = 4, 5 with various n. Parameters α, β, λ were solved
for each k specifically. The method of moments for a good fit with α, β, λ does
not work well. We could not find the values of these variables that was mentioned
in Robertson’s paper. There might not be a general methodology for the random
variable X (for “small k”) to fit to this Delaporte distribution.
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5.4 Conclusion

The method of moments verifies that, asymptotically, Delaporte distribution is a
good fit for a random variable X for both big n and small n cases.

Appendix: Bonferroni’s Inequality

We discuss Bonferroni’s Inequality and its application to our Poisson and Delaporte
distributions.

The calculations of Bonferroni help us to understand moment calculus better.

Definition (Moment Generating Function).

GX(z) =
∞∑
i=0

P (X = i)zi.

Theorem 9 (Inclusion-Exclusion Principle).

P (X = 0) = E

[(
X

0

)]
− E

[(
X

1

)]
+ E

[(
X

2

)]
− · · · .

Proof. Consider Taylor series expansion about z = 1,

f(z) = f(1) +
f ′(1)(z − 1)

1!
+
f ′′(1)(z − 1)2

2!
+
f ′′′(1)(z − 1)3

3!
+ · · · .

Then the moment generating function at z = 0 becomes

GX(0) = GX(1)− G′X(1)

1!
+
G′′X(1)

2!
− G′′′X(1)

3!
+ · · · .

which implies the statement of theorem.

It is still not simple to apply this theorem for P (X = 0). We might not need exact
formula anyway. We only want to use Bonferroni’s inequality to improve the lower
bounds.

Corollary 10 (Bonferroni’s inequality:).
For any odd m,

P (X = 0) ≥
m∑
s=0

(−1)sE

[(
X

s

)]
, (1)
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For any even m,

P (X = 0) ≤
m∑
s=0

(−1)sE

[(
X

s

)]
.

Erdös used m = 1 to get the lower bound lim
k→∞

R(k, k)
1
k ≥
√

2, i.e.

1− E[X] > 0 → P (X = 0) > 0.

However (1) with m = 3, 5 and our moment that we calculated earlier do not improve
the lower bounds of R(k, k) at all.

1− E[X] + E

[(
X

2

)]
− E

[(
X

3

)]
> 0 → P [X = 0] > 0

1−E[X]+E

[(
X

2

)]
−E

[(
X

3

)]
+E

[(
X

4

)]
−E

[(
X

5

)]
> 0 → P [X = 0] > 0.

I: Poisson Paradigm

Recall the probability mass function of Poisson distribution:

P (X = j) =
λje−λ

j!
for j ≥ 0.

Crash course in probability

Moment generating function:

φ(t) =
∞∑
j=0

P (X = j)tj =
∞∑
j=0

λje−λ

j!
tj = e(t−1)λ

and

E[(X)m] =
∞∑
j=0

P (X = j)(j)m =
dmφ(t)

dzm

∣∣∣∣
t=1

= λm.

We can also verify the inclusion-exclusion principle:

∞∑
s=0

(−1)sE

[(
X

s

)]
=
∞∑
s=0

(−1)sλs

s!
= e−λ = P (X = 0).

Exponential moment generating function:

MX(t) = E[etX ] =
∞∑
j=0

P (X = j)etj =
∞∑
j=0

λje−λ

j!
etj = eλ(e

t−1)
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and

E[Xm] =
∞∑
j=0

P (X = j)jm =
dmMX(t)

dtm

∣∣∣∣
t=0

=
m∑
k=0

S(m, k)λk,

where S(m, k) is Stirling numbers of the second kind.

Crash course on Stirling number

Matrix s(n, k), Stirling number of the first kind, and matrix S(n, k), Stirling number
of the second kind, are inverse of each other.

Stirling numbers of the first and second kind are dual pair, i.e.

an =
n∑
k=0

s(n, k)bk ⇐⇒ bn =
n∑
k=0

S(n, k)ak.

Two examples of these important identity are

(x)n =
n∑
k=0

s(n, k)xk ⇐⇒ xn =
n∑
k=0

S(n, k)(x)k,

and

E[Xm] =
m∑
k=0

S(m, k)λk ⇐⇒ λm =
m∑
k=0

s(m, k)E[Xk] = E[(X)m].

As mentioned earlier, this Poisson case only valid for “small n”. Therefore it does
not improve the lower bound of R(k, k).

II: Delaporte Paradigm

We verify Bonferroni’s Inequality with Delaporte distribution, “big n” case, that we
have done before.

Assume the size of n ∼ 2k

e
2

k
2 . We also let

λ ∼ 2
k
2

√
k
, α ∼ k2

k
2 , β ∼

√
k2

k
2 .

For each E[(X)s],
The first term is λs.
The second term is sαβλs−1.
The third term is

(
s
2

)
αβ2(α + 1)λs−2.

The fourth term is
(
s
3

)
αβ3(α + 1)(α + 2)λs−3.

13



The fifth term is
(
s
4

)
αβ4(α + 1)(α + 2)(α + 3)λs−4.

· · ·

Therefore,

P (X = 0) =
∞∑
s=0

(−1)sE

[(
X

s

)]
=
∞∑
s=0

(−1)s(λs + sαβλs−1 +
(
s
2

)
αβ2(α + 1)λs−2 +

(
s
3

)
αβ3(α + 1)(α + 2)λs−3 + . . . )

s!

=
∞∑
s=0

(−1)s(
λs

s!
+
αβ

1!

λs−1

(s− 1)!
+
αβ2(α + 1)

2!

λs−2

(s− 2)!
+
αβ3(α + 1)(α + 2)

3!

λs−3

(s− 3)!
+ . . . )

= (1− αβ +
αβ2(α + 1)

2!
− αβ3(α + 1)(α + 2)

3!
+
αβ4(α + 1)(α + 2)(α + 3)

4!
− . . . ) · e−λ

=
e−λ

(1 + β)α
→ 0,

which agrees which proposition 6 and is the result we expect.
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