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1 Introduction

Dr. Z.

• Continuous and discrete paradigms: ε− δ Cauchy-Weierstrass-style.

• Complex analysis was a different story. It has a feel of discrete, we use power
series and a formal power series.

• On a fundamental level, continuous mathematics is just a degenerate case of
the discrete, as I will show you today.

Mine

• Discrete math. is more natural and down-to-earth.

• Probability is especially neat to me as it is not just counting stuff but have
some meaning.

• This work from my advisor shows the connection between discrete and contin-
uous mathematics.

• New algorithm for automated proof.

2 Moment Calculus and Central Limit Theorem

Inverse-Fourier-Transform:
∑
r

mr(it)
r

r!
= E[eitX ].

2.1 Basic probability

We have a finite set S, called the sample space consisting of simple events, s. Each
s has a probability ps attached to it where

∑
s∈S

ps = 1.

We also have a random variable X : S → R, where R is a finite set of real numbers.
We are interested in its probability distribution Pr(s ∈ S|X(s) = r).

Next, the first moment,

µ = E[X] :=
∑
s∈S

psX(s).

Analogously, the higher moments (about the mean) are defined by

mr(X) = E[(X − µ)r] :=
∑
s∈S

ps(X(s)− µ)r.

Note m1 = 0.
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2.2 Moment Generating Function

φ(t) = E[etX ] =


∑
x

etxp(x) if x is discrete∫∞
−∞ e

txf(x)dx if x is continuous.

Note φn(0) = E[Xn].

Moment Generating Function of standard normal distribution

φ(t) =
1√
2π

∫ ∞
−∞

etxe−
x2

2 dx =
1√
2π
e

t2

2

∫ ∞
−∞

e−
(x−t)2

2 dx = e
t2

2 .

Moment Generating Function of binomial distribution

We will show binomial distribution is asymptotically normal.

φ(t) =
n∑

x=0

(
n

x

)
e
t

(
x−np√
np(1−p)

)
px(1− p)n−x

=
n∑

x=0

(
n

x

)(
pe

t(1−p)√
np(1−p)

)x(
(1− p)e

−tp√
np(1−p)

)n−x

=

(
pe

t(1−p)√
np(1−p) + (1− p)e

−tp√
np(1−p)

)n

≈

(
p

[
1 +

t(1− p)√
np(1− p)

+
t2(1− p)2

2np(1− p)

]
+ (1− p)

[
1− tp√

np(1− p)
+

t2p2

2np(1− p)

])n

=

(
1 +

t2

2n

)n

= e
t2

2 as n→∞.

2.3 Central Limit Theorem

Standard Normal Distribution:

P (a ≤ X ≤ b) =
1√
2π

∫ b

a

e−
x2

2 dx

Central Limit Theorem:
Let Xk be a sequence of mutually independent random variables with a common
distribution. Suppose that µ := E[Xk] and σ2 := V ar[Xk] exist and let Sn =
X1 +X2 + · · ·+Xn Then for every fixed β,

P{Sn − nµ
σ
√
n

< β} → N (β).
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Proof. Let Yn :=
Xn − µ
σ

.

Clearly Yn has mean 0 and standard deviation 1.

Consider moment generating function of
Y1 + Y2 + · · ·+ Yn√

n

E[e
t
(

Y1+···+Yn√
n

)
] = E[e

tY1√
n e

tY2√
n . . . e

tYn√
n ]

= E[e
tY√
n ]n by independence

≈ E

[
1 +

tY√
n

+
t2Y 2

2n

]n
=

[
1 +

t√
n
E[Y ] +

t2

2n
E[Y 2]

]n
=

[
1 +

t2

2n

]n
= e

t2

2 as n→∞.

which is the moment generating function of a standard normal distribution.

2.4 Connection between moment mr and moment generating
function

φ(t) := E[etX ] = 1 + tm1 +
t2m2

2!
+ . . . .

This implies φ(n)(0) = mn.

Moment of the standard normal distribution: φ(t) = e
t2

2 .

This implies m2r =
(2r)!

r!2r
and m2r−1 = 0.

3 The Proof (of repeated same prob. n times)

This is my summarization from the paper “The automatic central limit theorems
generator (and much more!)” of Dr.Z.

A convenient way to encode this via, probability generating function,

f(t) :=
∑
r∈R

P (X(s) = r)tr,

This is easily seen to be equal to ∑
s∈S

pst
X(s).
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Let fr(X) be the factorial moment

fr(X) :=
∑
s∈S

ps(X(s)− µ)(r)

where X(r) = X(X − 1) . . . (X − r + 1).

Also define Fr by Fr =
drf(t)

dtr

∣∣∣
t=1

and fr(n) =
drf(t)n

dtr

∣∣∣
t=1
.

Note fr(1) = Fr.

3.1 How to Proof

Concept

We’d like to show the moment E[etX ] is the same as the moment of the normal

distribution, e
t2

2 . We need to do so by showing that

m2r(n) = m2(n)r · (2r)!

2r · r!

(
1 +

P1(r)

n
+
P2(r)

n2
+ · · ·

)
and

m2r+1(n) = m2(n)r+
1
2

(
P1(r)

n
+
P2(r)

n2
+ · · ·

)
.

We will do this by first conjecture the formula of fr(n) by differentiate the probability
generating function. Second, prove it using the recurrence in step 2. Lastly connect
fr(n) to mr(n) using Stirling numbers of the second kind in step 3.

Step 1 Calculate Fr from Maclaurin series of f(1 + z) around t = 0,

f(1 + z) =
∞∑
r=0

Frz
r

r!
,

or by using the relation Fr =
drf(t)

dtr

∣∣∣
t=1
.

Then also conjecture formula of fr(n) ,

fr(n) =
drf(t)n

dtr

∣∣∣
t=1
.

Step 2 Prove the conjecture about fr(n) using the recurrence:

fr(n) =
r−1∑
j=0

[
n

(
r − 1

j

)
−
(
r − 1

j + 1

)]
· Fj+1 · fr−1−j(n)
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where f0(n) = 1 and f1(n) = 0.

This recurrence is obtained by differentiate both sides of

f(1 + z)n =
∞∑
r=0

fr(n)zr

r!
,

then multiply both sides with f(1 + z), rearrange the terms and compare the coeff.
of zr−1.

Remark We can also another recurrence that is easier to derive:

fr(n) is defined by f(1 + z)n =
∞∑
r=0

fr(n)zr

r!
.

We use the fact that

f(1 + z)n+1 = f(1 + z)n · f(1 + z)

that entails:

1 +
∞∑
r=2

fr(n+ 1)

r!
zr =

(
1 +

∞∑
r=2

fr(n)

r!
zr

)(
1 +

∞∑
r=2

Fr

r!
zr

)
.

Rearranging, and comparing coefficient of zr, we have the following recurrence

fr(n+ 1)− fr(n) =
r∑

s=2

(
r

s

)
Fsfr−s(n), n ≥ 1.

Step 3 Connect mr(n) with fr(n) by using the relation

mr(n) =
r∑

k=1

s2(r, k)fk(n)

where s2(r, k) is a Stirling number of second kind defined by the recurrence

s2(r, k) = ks2(r − 1, k) + s2(r − 1, k − 1),

s2(1, k) = 1 if k = 1 and s2(1, k) = 0, otherwise.

Note Xr =
r∑

k=1

s2(r, k)X(k).
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4 The probability distribution of number of head

after tossing a fair coin n times is asymptotically

normal

4.1 Binomial distribution with p =
1

2

First moment, E[X] =

(
1

2

)n∑
x

(
n
x

)
x =

n

2
.

Second moment, E[X2] =

(
1

2

)n∑
x

(
n
x

)
x2 =

n(n+ 1)

4
.

Second moment about the mean, E[(X − µ)2] =

(
1

2

)n∑
x

(
n
x

)
(x− µ)2 =

n

4
.

m2r+1(n) = 0 , m4(n) =
n(3n− 2)

16
and ...

The general form of m2r(n) = crn
r +O(nr−1) where c =

[
1

4
,

3

16
,
15

64
,
105

256
,

945

1024
, ...

]
.

This seemingly random looking polynomials actually have pattern.

m2r(n) =
(n

4

)r (2r)!

2r · r!

(
1− r(r − 1)

3n
+O

(
1

n2

))
.

But how to prove m2r(n) is true up to certain order rigorously?

4.2 Probability generating function

Let the probability generating function, g(t) =
1 + t

2
and the probability generating

function about the mean, f(t) =
1 + t

2
· 1√

t
.

4.3 Proof

We only need to show f2r(n) and f2r+1(n) are true up to certain order.

Conjecture: f2r(n) =
(n

4

)r (2r)!

2r · r!

(
1 +

r(r − 1)(4r − 1)

n
+O

(
1

n2

))
.

and f2r+1(n) =
(n

4

)r (2r)!

2r · r!

(
−(2r + 1)r − r2(r − 1)(2r + 1)(4r + 1)

3n
+O

(
1

n2

))
.

We can prove these equations (PLUS the smaller terms) by using the recurrence:

fr(n) =
r∑

j=0

[
n

(
r − 1

j

)
−
(
r − 1

j + 1

)]
· Fj+1 · fr−1−j(n),
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where Fi =

[
1, 0,

1

4
,−3

4
,
45

16
, ...

]
, i = 0, 1, 2, ....

Example 1

Say we want to show: f2r(n) =
(n

4

)r (2r)!

2r · r!
+ smaller order.

Proof. By induction on r
For r = 0, f0(n) = 1.

Induction step assume the statement is true for r = 0, 1, ..., R− 1.

Then by the recurrence

f2R(n) =
��

���
���

�:0
n · F1 · f2R−1(n) + n(2R− 1)F2f2R−2(n) + smaller order

= n(2R− 1)
1

4

(n
4

)R−1 (2R− 2)!

2R−1(R− 1)!
+ smaller order

=
(n

4

)R (2R)!

2RR!
+ smaller order

Example 2

To show: f2r+1(n) =
(n

4

)r (2r)!

2r · r!

(
−
(

2r + 1

2

))
+ smaller order.

Proof.

f2R+1(n) = n

(
2R

1

)
· F2 · f2R−1(n) + n

(
2R

2

)
F3f2R−2(n) + smaller order

=
(n

4

)R−1 (2R− 2)!

2R−1 · (R− 1)!

[
−n(2R)

4
(2R− 1)(R− 1)− n(2R)(2R− 1)

2
· 3

4

]
+ smaller order

=
(n

4

)R−1 (2R− 2)!

2R−1 · (R− 1)!

(n
4

)
(2R)(2R− 1)

[
−R + 1− 3

2

]
+ smaller order

=
(n

4

)R (2R)!

2R−1 ·R!
R

(
−2R + 1

2

)
+ smaller order

=
(n

4

)R (2R)!

2R ·R!
[−(2R + 1)R] + smaller order.

Example 3

To show: f2r(n) =
(n

4

)r (2r)!

2r · r!

(
1 +

r(r − 1)(4r − 1)

n
+O

(
1

n2

))
.
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Proof. Use

f2R(n) =n

(
2R− 1

1

)
F2 · f2R−2(n)−

(
2R− 1

2

)
F2 · f2R−2(n)

+ n

(
2R− 1

2

)
F3f2R−3(n) + n

(
2R− 1

3

)
F4f2R−4(n)

+ smaller order.

5 The probability distribution of # of Inversion

is asymptotically normal

5.1 Number of inversion on permutation of length n

Another important discrete distribution function is the Mahonian distribution, de-
fined on the set of permutations on n objects, describing the random variable “num-
ber of inversions” ( inv(π) is the number of pair (i, j), 1 ≤ i < j ≤ n such that
πi > πj).

First moment, E[X] =
n(n− 1)

4
.

Second moment about the mean, E[(X − µ)2] =
n(n− 1)(2n+ 5)

72
.

To see how we find these moments: Xn = Y1 + · · · + Yn, where Y1, . . . , Yn are inde-
pendent random variables and Yj is uniformly distributed on {0, . . . , j − 1}.

5.2 Proof

Probability generating function

Fn(q) =
1

n!

n∏
i=1

1− qi

1− q
.

Gn(q) =
Fn(q)

q
n(n−1)

4

.

Br(n), binomial moment (= E
[(

Mn

r

)]
), can be calculated from

1. Gn(1 + z) =
∞∑
r=0

Br(n)zr or

2. Let Pn(q) :=
Gn(q)

Gn−1(q)
→ Pn(q) =

1

n
· 1− qn

1− q
· q 1−n

2
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Then Br(n) can be calculated from the recurrence
(from Gn(1 + z) = Pn(1 + z)Gn−1(1 + z) and comparing coef. of zr.)

Br(n)−Br(n− 1) =
r∑

s=2

Br−s(n− 1)ps(n)

where ps(n) is from Pn(1 + z) =
∞∑
i=0

pi(n)zi. Note p0(n) = 1 and p1(n) = 0.

Then moment about mean Mr(n) =
r∑

k=1

s2(r, k) ·Bk(n) · k!.

(similar relation to the last section.)

Theorem 1.

M2r(n)

M2(n)r
=

(2r)!

2rr!

(
1− 9r(r − 1)

25
· 1

n

)
+O

(
1

n2

)
.

Proof. Notice that here we will follow the same procedure. We first conjecture Br(n).
Then prove it using the recurrence. And finally we convert Br(n) to Mr(n) to prove
the theorem.

Let just try to show this only for the leading term.
Note that

1. M2(n) =
n3

36
+O(n2).

2. By induction, we also know Deg(B2r) > Deg(B2r−1).

We use Maple to conjecture the formula of B2r(n):

B2r(n) =

(
n3

72

)r

· 1

r!
+O(n3r−1).

Note p0(n) = 1, p1(n) = 0 and p2(n) =
n2 − 1

24
.

We prove by induction on r.

Base case: B2(n) =
n3

72
+O(n2).

Induction step: Assume true up to r − 1

B2r(n)−B2r(n− 1) =
n2

24
·
(
n3

72

)r−1

· 1

(r − 1)!
+O(n3r−2)

=
n3r−1

24× 72(r−1) ·
1

(r − 1)!
+O(n3r−2).

10



This implies

B2r(n) =
n3r

72× 72r−1 ·
1

r(r − 1)!
+O(n3r−1)

=
n3r

72r
· 1

r!
+O(n3r−1).

6 Conclusion and Future Work

6.1 Conclusion

Using symbolic-crunching the computer can derive deep theorems. The passage from
the discrete to the continuous becomes much more concrete and down-to-earth.

6.2 Future Work

Is the distribution of everything is asymptotically normal?

Proof section
1. Binomial distribution Here 4
2. Number of inv. on n! Here 5
3. Number of des. on n! Here ??
4. Number of Maj132 on n! Here (not done) ??
5. Mahonian prob. dist. on words Dr.Z. –
6. Inv + Maj join prob. dist. Dr.Z. –
7. Number of pattern avoid. 132 on n! No proof ??

The degree of moment (about mean)

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14
binomial 0 1 0 2 0 3 0 4 0 5 0 6 0 7
inversion 0 3 0 6 0 9 0 12 0 15

descendent 0 1 0 2 0 3 0 4 0 5 0 6 0 7
Maj132 0 3 4 6 7 9 10 12 13

pattern avoid. 132 0 5 7 10

Other possible objects:
Ramsey number, Schur number, Van der Waerden number, Boolean function and
Maj+des.
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