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History of Determinants

• The first appearance was in China around 3rd century BC.
The determinant was used to determine whether the system
of linear equations has a unique solution.

• In Europe, two-by-two determinants were considered by
Cardano at the end of the 16th Century.

• Many other Mathematicians contributed. The names are
includes Leibniz, Cramer(1750), Vandermonde(1771),
Laplace(1772) , Lagrange(1773), Gauss(1801),
Binet(1881,1882), Cauchy(1882), etc.

• It was Cauchy who used the word determinant in its present
sense.

• Note: Inverse Matrix, Determinant and solving the system of
linear equations are strongly tied together.
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Definitions

• Leibniz Formula
The determinant of an n-by-n matrix A is

det(A) =
∑

σ∈Sn
(−1)Inv(σ)Πn

k=1ak,σk
.

where Inv(σ) := number of pairs (i, j) in σ such that i < j
and σ(i) > σ(j).

• Example The determinant of a 2x2 matrix is∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1.
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Definitions(continued)

• Laplace Expansion
The determinant of an n-by-n matrix A is

det(A) =
∑n

j=1(−1)i+jai,jMi,j .

=
∑n

i=1(−1)i+jai,jMi,j .

where Mi,j := the determinant of an (n− 1)-by-(n− 1)
matrix that results from A by removing the i-th row and the
j-th column.

• Example The determinant of a 3x3 matrix is∣∣∣∣∣∣
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣ = (−1)(3+1)a3,1

∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣+

(−1)(3+2)a3,2

∣∣∣∣ a1,1 a1,3

a2,1 a2,3

∣∣∣∣+ (−1)(3+3)a3,3

∣∣∣∣ a1,1 a1,2

a2,1 a2,2
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Faster Calculation of the Determinant by Laplace
Expansion

• However the naive calculation of determinant using Laplace
expansion is extremely inefficient. The number of required
operations is of order n! for an n-by-n matrix.

• With one simple modification of this method, one could speed
up a calculation considerably.

• Laplace Expansion:
det(A) =
(−1)n+1an,1Mn,1+(−1)n+2an,2Mn,2+...+(−1)n+nan,nMn,n.
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Faster Calculation of the Determinant by Laplace
Expansion(Continued)

• We replace the nth row of A by the ith row, 1 ≤ i < n, then
apply Laplace expansion on the last row.

• 0 = (−1)n+1ai,1Mn,1 + (−1)n+2ai,2Mn,2 + ...+
(−1)n+nai,nMn,n, 1 ≤ i < n.

• With this set of n− 1 linear equations with n unknowns, we
need only to solve this system of equations and calculate only
one, instead of n, of the determinant of size n− 1.
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What type of problems are we interested in?

• Example det
1≤i,j≤n

((
i+ j

j

))
= n+ 1.

• Example Vandermonde determinant∣∣∣∣∣∣∣∣∣∣
xn−1

1 xn−1
2 ... xn−1

n

xn−2
1 xn−2

2 ... xn−2
n

... ... ... ...
x1 x2 ... xn
1 1 ... 1

∣∣∣∣∣∣∣∣∣∣
=
∏

1≤i<j≤n(xi − xj).

• Solution afterward.
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Why are we interested in determinant problems?

• Some Applications:
• Linear independence of vectors in Rn.
• Wronskian to check linearly independent of n functions.
• Jacobian determinant to calculate the new volume after a
linear mapping.

• In our case, the determinant is an answer to the counting
problem, namely plane partitions.
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Partitions

• Definition: a partition of n is a one-dimensional array of
nonnegative integers ni which are nonincreasing from left to

right such that
k∑
i=1

ni = n.

• Example 7+4+2+1 is a partition of 14.
which can be represent by Ferrers diagram as
• • • • • • •
• • • •
• •
•

• Definition: p(n) is the number of partitions of n.

• Examples p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7.
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Plane Partitions

• Definition: a plane partition of n is a two-dimensional array
of nonnegative integers ni,j which are nonincreasing from left

to right and top to bottom
∑

1≤i≤k,1≤j≤l
ni,j = n..

• Example
5 4
3 1
2

is a plane partition of 15.

• Definition: pp(n) is the number of plane partitions of n.

• Examples
pp(1) = 1, pp(2) = 3, pp(3) = 6, pp(4) = 13, pp(5) = 24.
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Generating Function for Plane Partitions

• We focus on generating functions for different kinds of plane
partitions.

• The result below is due to Major Percy Alexander
MacMahon(1912).

Theorem
∞∑
n=0

pp(n)qn =
∞∏
j=1

1
(1− qj)j

.

• Note: The generating function for partitions:
∞∑
n=0

p(n)qn =
∞∏
j=1

1
1− qj

.
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Restricted Plane Partitions

• We show other variations of the plane partition problems and
their generating functions.

• Let β(r, s, t) := {(i, j, k), 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t}.

• Theorem
The generating function for plane partitions that are subsets of
β(r, s, t) is given by ∏

(i,j,k)∈β(r,s,t)

1− qi+j+k−1

1− qi+j+k−2
.

• Note: By letting r, s, t→∞, we get the generating function
for plane partitions.
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Restricted Partitions

• The generating function for restricted partitions is again not
difficult to find.

• Theorem
The generating function for partitions into at most r parts , each
less than or equal to s is given by[r + s

s

]
where

[
r + s

s

]
:=

[r + s]q!
[r]q![s]q!

and [r]q! := 1(1 + q)(1 + q + q2)...(1 + q + q2 + ..+ qr−1).
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Restricted Plane Partitions(Continued)

• Other main variations of plane partitions:

• Symmetric plane partitions is a plane partitions for which
(i, j, k) is an element if and only if (j, i, k) is an element. In
another word, the plane partitions with symmetry about the
x = y plane.

• Cyclically symmetric plane partitions is a plane partitions
for which (i, j, k) is an element if and only if (j, k, i) and
(k, i, j) are elements.

• Totally symmetric plane partitions is a plane partitions for
which (i, j, k) is an element if and only each permutation of
these vertices yields an element of the plane partition.
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More Generating Functions

• Theorem
The generating function for symmetric plane partitions that are
subsets of β(r, r, t) is given by∏

η∈β(r,r,t)/S2

1− q|η|(1+ht(η))

1− q|η|ht(η)
.

where η is an orbit and |η| denotes the number of elements in
η.
ht(i, j, k) is the height of an element (i, j, k) defined by
ht(i, j, k) := i+ j + k − 2.

• Or we express it as

(
∏r
i=1

∏t
k=1

1−q1+2i+k−2

1−q2i+k−2 )(
∏

1≤i<j≤r
∏t
k=1

1−q2(1+i+j+k−2)

1−q2(i+j+k−2) ).
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More Generating Functions(Continued)

• Theorem
The generating function for cyclically symmetric plane
partitions that are subsets of β(r, r, r) is given by∏

η∈β(r,r,r)/C3

1− q|η|(1+ht(η))

1− q|η|ht(η)
.

• Theorem
The orbit counting generating function for totally symmetric
plane partitions that are subsets of β(r, r, r) is given by∏

η∈β(r,r,r)/S3

1− q1+ht(η)

1− qht(η)
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Remark on Generating Functions

• By letting q → 1 in these generating functions we get the
counting function.

• Example

Theorem
The number of plane partitions that fit inside β(r, s, t) is

t∏
k=1

s∏
j=1

r∏
i=1

i+ j + k − 1
i+ j + k − 2

.

• The generating function of symmetric partition (which is an
analog of symmetric plane partition) is again not difficult to
calculate.

• The generating function of self-conjugate partition into at
most r parts, each less than or equal to r is given by ???
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Connection between Determinant and Generating
Functions for Restricted Plane Partition

• Theorem
(Gessel and Viennot 1985) The generating function for plane
partitions that fit inside β(r, s, t) is

det
1≤i,j≤r

(
qi(i−j)

[
t+ s

s− i+ j

])
.

• For the counting function, we let q → 1.

Theorem
The number of plane partitions that fit inside β(r, s, t) is

det
1≤i,j≤r

((
t+ s

s− i+ j

))
.



Connection between Determinant and Generating
Functions for Restricted Plane Partition

• Theorem
(Gessel and Viennot 1985) The generating function for plane
partitions that fit inside β(r, s, t) is

det
1≤i,j≤r

(
qi(i−j)

[
t+ s

s− i+ j

])
.

• For the counting function, we let q → 1.

Theorem
The number of plane partitions that fit inside β(r, s, t) is

det
1≤i,j≤r

((
t+ s

s− i+ j

))
.



Connection between Determinant and Generating
Functions for Restricted Plane Partition

• Theorem
(Gessel and Viennot 1985) The generating function for plane
partitions that fit inside β(r, s, t) is

det
1≤i,j≤r

(
qi(i−j)

[
t+ s

s− i+ j

])
.

• For the counting function, we let q → 1.

Theorem
The number of plane partitions that fit inside β(r, s, t) is

det
1≤i,j≤r

((
t+ s

s− i+ j

))
.



Methods in Evaluating Determinants

• There are many methods for evaluating determinants. But
there is no one universal method that dominates the rest.
Here are my favorites.

• Dodgson Condensation Method.

• Roots method.

• Zeilberger method.
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Condensation Method

• Let An be an n-by-n matrix
Let Bk(i, j) be the determinant of the k-by-k minor of An
consisting of k contiguous rows and columns of An starting
with row i and column j.
In particular det(An) = Bn(1, 1).

• Theorem
(Desnanot-Jacobi adjoint matrix theorem)

Bn(1, 1)Bn−2(2, 2) =
Bn−1(1, 1)Bn−1(2, 2)−Bn−1(2, 1)Bn−1(1, 2).
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Example 1 of Dodgson Condensation Method

• Example: The determinant of a 3x3 matrix can be calculated
accordingly.∣∣∣∣∣∣
a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

∣∣∣∣∣∣ a2,2 =∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ ∣∣∣∣ a2,2 a2,3

a3,2 a3,3

∣∣∣∣− ∣∣∣∣ a1,2 a1,3

a2,2 a2,3

∣∣∣∣ ∣∣∣∣ a2,1 a2,2

a3,1 a3,2

∣∣∣∣ .



Example 2 of Dodgson Condensation Method

• Example det
1≤i,j≤n

((
i+ j

j

))
= n+ 1.

• Step 1, Make a more general conjecture.

det
1≤i,j≤n

((
i+ j + a+ b− 2

j + a− 1

))
=

n∏
k=1

b∏
j=1

a∏
i=1

i+ j + k − 1
i+ j + k − 2

.

• We first simplify the formula on the right hand side for the
future use.∏n
k=1

∏b
j=1

∏a
i=1

i+j+k−1
i+j+k−2

=
∏n
k=1

∏b
j=1

j+k+a−1
j+k−1

=
∏n
k=1

(k+a+b−1)!
(k+a−1)!

(k−1)!
(k+b−1)!

= (n+a+b−1)!!
(a+b−1)!! (n− 1)!! (a−1)!!

(n+a−1)!!
(b−1)!!

(n+b−1)!!
where a!! := 0!1!2!...a!.
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Example 2 of Dodgson Condensation Method(Continued)

• Step 2, Verify the conjecture by using induction.

• Define Tn(a, b) := (n+a+b−1)!!
(a+b−1)!! (n− 1)!! (a−1)!!

(n+a−1)!!
(b−1)!!

(n+b−1)!! .

• Base case: n = 1,
LHS: det(

(
i+j+a+b−2
i+a−1

)
)1i,j=1 =

(
a+b
a

)
.

RHS: T1(a, b) = (1+a+b−1)!!
(a+b−1)!! (1− 1)!! (a−1)!!

(1+a−1)!!
(b−1)!!

(1+b−1)!!

= (a+b)!
a!b!



Example 2 of Dodgson Condensation Method(Continued)

• Step 2, Verify the conjecture by using induction.

• Define Tn(a, b) := (n+a+b−1)!!
(a+b−1)!! (n− 1)!! (a−1)!!

(n+a−1)!!
(b−1)!!

(n+b−1)!! .

• Base case: n = 1,
LHS: det(

(
i+j+a+b−2
i+a−1

)
)1i,j=1 =

(
a+b
a

)
.

RHS: T1(a, b) = (1+a+b−1)!!
(a+b−1)!! (1− 1)!! (a−1)!!

(1+a−1)!!
(b−1)!!

(1+b−1)!!

= (a+b)!
a!b!



Example 2 of Dodgson Condensation Method(Continued)

• Step 2, Verify the conjecture by using induction.

• Define Tn(a, b) := (n+a+b−1)!!
(a+b−1)!! (n− 1)!! (a−1)!!

(n+a−1)!!
(b−1)!!

(n+b−1)!! .

• Base case: n = 1,
LHS: det(

(
i+j+a+b−2
i+a−1

)
)1i,j=1 =

(
a+b
a

)
.

RHS: T1(a, b) = (1+a+b−1)!!
(a+b−1)!! (1− 1)!! (a−1)!!

(1+a−1)!!
(b−1)!!

(1+b−1)!!

= (a+b)!
a!b!



Example 2 of Dodgson Condensation Method(Continued)

• Base case: n = 2,

• LHS: det(
(
i+j+a+b−2
i+a−1

)
)2i,j=1 =

∣∣∣∣∣
(
a+b
a

) (
a+b+1
a+1

)(
a+b+1
a

) (
a+b+2
a+1

) ∣∣∣∣∣
=
(
a+b
a

)(
a+b+2
a+1

)
−
(
a+b+1
a+1

)(
a+b+1
a

)
= (a+b+2)!(a+b)!

(a+1)!a!(b+1)!b! −
(a+b+1)!(a+b+1)!
(a+1)!a!(b+1)!b!

= (a+b+1)!(a+b)!
(a+1)!a!(b+1)!b! .

• RHS: T2(a, b) = (2+a+b−1)!!
(a+b−1)!! (2− 1)!! (a−1)!!

(2+a−1)!!
(b−1)!!

(2+b−1)!!

= (a+b+1)!(a+b)!
(a+1)!a!(b+1)!b! .
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Example 2 of Dodgson Condensation Method(Continued)

• Induction Step:

• The determinant on the left hand side satisfies
Desnanot-Jacobi adjoint matrix theorem.
Bn(1, 1)Bn−2(2, 2) =
Bn−1(1, 1)Bn−1(2, 2)−Bn−1(2, 1)Bn−1(1, 2)

• We need the right hand side to satisfy the same relation. We
show that:
Tn(a, b)Tn−2(a+ 1, b+ 1) =
Tn−1(a, b)Tn−1(a+ 1, b+ 1)− Tn−1(a, b+ 1)Tn−1(a+ 1, b).
In this calculation, we use computer to verify the relation.

• Done! Hence, det
1≤i,j≤n

((
i+ j

j

))
= Tn(1, 1) = n+ 1.
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Remark on Dodgson Condensation Method

• Pros:
• Easy to understand.
• After finding the right conjecture, the proof can be done
completely automatic.

• Con:
• More limited type of problems that this method can solve.
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Roots Method

• The case where the determinant has some symbols, we can
extract all the factors of the determinant. Then we determine
the constant factor by comparing the coefficient of a
monomial in the polynomial.

• Example Vandermonde determinant∣∣∣∣∣∣∣∣∣∣
xn−1

1 xn−1
2 ... xn−1

n

xn−2
1 xn−2

2 ... xn−2
n

... ... ... ...
x1 x2 ... xn
1 1 ... 1

∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(xi − xj).
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Example of Roots Method

• First, we notice that by replacing xi by xj , i 6= j, the
determinant of this new matrix becomes 0. Hence (xi − xj) is
a factor of this determinant.

• Second, we proceed using induction on n, the number of
variables.
Base Case: We verify the statement is true for n = 2.
Induction Step: Assume the statement is true for all k < n.

We proceed by extracting
n∏
j=2

(x1 − xj) from det(An).

det(An) = g(x1, x2, ..., xn)
n∏
j=2

(x1 − xj).
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Example of Roots Method(Continued)

• By comparing the coefficient of xn−1
1 on both sides, we have

g(x1, x2, ..., xn) =

∣∣∣∣∣∣∣∣
xn−2

2 xn−2
3 ... xn−2

n

... ... ... ...
x2 x3 ... xn
1 1 ... 1

∣∣∣∣∣∣∣∣

• We then conclude the result by claiming an induction.
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Remark on Roots method

• Pros:
• The main idea is simple.
• Works well when the matrix has mixed types of entries.

• Con:
• There is more difficulty when the determinant has repeated
roots.
• Nobody finds the way to computerize it yet. And it takes a
long time to do by hand.
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Zeilberger Method

• Zeilberger method is one of the most powerful tool to solve
determinant problem. It could also be done automatically by
computer. We first describe the method then show an
example.

• Let ai,j be an entry (i, j) of matrix A of size n.
By definition of Laplace expansion

det
1≤i,j≤n

(ai,j) =
n∑
j=1

(−1)n+jan,jMn,j .

Let bn be det
1≤i,j≤n

(ai,j).

Assume bn 6= 0 for all n.
Note: Mn,n = bn−1.

• Define cn,j := (−1)n+jMn,j/Mn,n.

We have bn =
n∑
j=1

cn,jan,jMn,n.
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(−1)n+jan,jMn,j .

Let bn be det
1≤i,j≤n

(ai,j).

Assume bn 6= 0 for all n.
Note: Mn,n = bn−1.

• Define cn,j := (−1)n+jMn,j/Mn,n.

We have bn =
n∑
j=1

cn,jan,jMn,n.
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Zeilberger Method(Continued)

• Hence it follows that:

cn,n = 1. (1)

n∑
j=1

cn,jai,j = 0, 1 ≤ i < n. (2)

n∑
j=1

cn,jan,j =
bn
bn−1

. (3)



Computation of Zeilberger Method

• Goal: To verify the identities 1,2,3.

• First we need to calculate the numeric values of cn,j from the
relation ∑n

j=1 cn,jai,j = 0 for 1 ≤ i < n.

and

cn,n = 1; n ≥ 1.

for n = 1, 2, 3, ....
• Then we guess the closed-form formula or guess the linear

recurrence relations with polynomial coefficients of cn,j .
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Computation of Zeilberger Method(Continued)

• If cn,j has a hypergeometric closed-form formula and ai,j is
hypergeometric , we evaluate the sum in (2) and (3) by using
Zeilberger’s Algorithm.

• If cn,j satisfies the linear recurrence relations with polynomial
coefficients (holonomic), we evaluate the sum in (2) and (3)
by using Frédéric Chyzak’s algorithm.

• If cn,j is not holonomic then we do not have an algorithm to
verify (1),(2) and (3) yet.

• Remark: However before starting to solve any problem, it is
always a good idea to check first that bn

bn−1
is holonomic.
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Zeilberger Method and Plane Partitions

• Recall problems on the plane partitions:

• β(r, s, t) := {(i, j, k), 1 ≤ i ≤ r, 1 ≤ j ≤ s, 1 ≤ k ≤ t}.
• Find the generating function for plane partitions that are

subsets of β(r, s, t).

• Find the generating function for symmetric plane partitions
that are subsets of β(r, r, t).

• Find the generating function for cyclically symmetric plane
partitions that are subsets of β(r, r, r).

• Find the orbit counting generating function for totally
symmetric plane partitions that are subsets of β(r, r, r).

• Remark: By setting q → 1, we change the generating
function into the counting function.
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Zeilberger Method and Plane Partitions (Continued)

• The last survived conjecture was the orbit counting generating
function for totally symmetric plane partitions that are
subsets of β(r, r, r). This problem, just like other, was
translated into determinant problem. This notoriously difficult
problem was solved using this Zeilberger method just last year
(2010) by Manuel Kauers, Christoph Koutschan and Doron
Zeilberger.

• Roles:
Doron Zeilberger → Zeilberger method
Manuel Kauers → Guess.m
Christoph Koutschan → HolonomicFunctions.m
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Zeilberger Method and Plane Partitions (Continued)

• Zeilberger method has been known since 2007 but the amount
of calculation was too big in practice. However with a lot of
tricks and optimizations from Manuel Kauers and Christoph
Koutschan, the programs were efficient enough to handle the
problem.



Part II, Variations of Zeilberger Method and
Krattenthaler’s Conjectures

• Prof. Krattenthaler made six conjectures about determinants
in Advanced Determinant Calculus: a Complement(2005).
Koutschan and I were able to solve three of them. All of them
could not be solved straight from Zeilberger method. Some
modifications of Zeilberger method are needed.



Krattenthaler’s Conjecture 1

• Theorem
Let the determinant D1(n) be defined by

D1(n) := det
1≤i,j≤n

(
δi,j +

(
µ+ i+ j − 2

j

))
where µ is an indeterminate. Then the following relation holds:

D1(2n)
D1(2n− 1)

= (−1)(
n−1

2 )
2n
(µ

2 + n
)
dn/2e

(µ
2 + 2n+ 1

2

)
n−1

(n)n
(
−µ

2 − 2n+ 3
2

)
d(n−2)/2e

,

where ak := a(a+ 1)(a+ 2)...(a+ k − 1).



Solution to Krattenthaler’s Conjecture 1

• We notice that the patterns occur at D1(2n)
D1(2n−1) but not

D1(2n+1)
D1(2n) .

• Therefore we need to switch our attention to only an even n.
We guess the recurrences for ci,j only for a matrix of even size.
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Zeilberger Method, First Variation

• The new identities, to be verified, from Zeilberger method will
be

cn,2n = 1.
2n∑
j=1

cn,jai,j = 0, 1 ≤ i < 2n.

2n∑
j=1

cn,ja2n,j =
D1(2n)

D1(2n− 1)
.



Application for Determinant of a Skew Symmetric Matrix

• Skew Symmetric matrix is a matrix An where ai,j = −aj,i.

• It is known that det(A2k−1) = 0. We want to show det(A2k).

• We can not compute
det(A2k+2)
det(A2k)

from original Zeilberger

method. However we can do as following:

• Recall: Desnanot-Jacobi adjoint matrix theorem:
bn(1, 1)bn−2(2, 2) =
bn−1(1, 1)bn−1(2, 2)− bn−1(1, 2)bn−1(2, 1).

• Note: bn(1, 1) = det(An).
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Application for determinant of Skew Symmetric Matrix

• We substitute n→ 2n+ 2 and n→ 2n+ 1 in Desnanot-Jacobi
adjoint matrix theorem then apply b2n+1(1, 1) = 0:

b2n+2(1, 1)b2n(2, 2) = −b2n+1(1, 2)b2n+1(2, 1).
b2n(1, 1)b2n(2, 2) = b2n(1, 2)b2n(2, 1).

• After dividing the two equations, we have
b2n+2(1, 1)
b2n(1, 1)

= −b2n+1(1, 2)
b2n(1, 2)

b2n+1(2, 1)
b2n(2, 1)

.

• Since −b2n+1(2, 1) = b2n+1(1, 2) and b2n(2, 1) = b2n(1, 2),
We have

b2n+2(1, 1)
b2n(1, 1)

=
(
b2n+1(1, 2)
b2n(1, 2)

)2

.
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Zeng’s Problem

• Theorem

det
1≤i,j≤2n

((j − i)Mi+j−3) =
n∏
k=1

(4k − 3)2

where Mn denotes Motzkin number defined by

Mn :=
n∑
k=0

(
n

2k

)
Ck

where Ck denote Catalan number defined by Ck := 1
k+1

(
2k
k

)
.

Mn also satisfies the recurrence

(n+ 4)Mn+2 = (2n+ 5)Mn+1 + (3n+ 3)Mn

where M−1 = 0 and M0 = 1.



Krattenthaler’s Conjecture 2

• Theorem
Let µ be an indeterminate and n be a non-negative integer. The
determinant

det
1≤i,j≤n

(
−δi,j +

(
µ+ i+ j − 2

j

))
= (−1)n/22n(n+2)/4

(µ
2

)
n/2(

n
2

)
!

(n−2)/2∏
i=0

i!2

(2i)!2

×b(n−4)/4c∏
i=0

(
µ

2
+ 3i+

5
2

)2

(n−4i−2)/2

(
−µ

2
− 3n

2
+ 3i+ 3

)2

(n−4i−4)/2


if n is even,



Krattenthaler’s Conjecture 2(Continued)

•

= (−1)(n−1)/22(n+3)(n+1)/4

(
µ− 1

2

)
(n+1)/2(n−1)/2∏

i=0

i!(i+ 1)!
(2i)!(2i+ 2)!

×b(n−3)/4c∏
i=0

(
µ

2
+ 3i+

5
2

)2

(n−4i−3)/2

×b(n−3)/4c∏
i=0

(
−µ

2
− 3n

2
+ 3i+

3
2

)2

(n−4i−1)/2


if n is odd.



Solution to Krattenthaler’s Conjecture 2

• In theory, by Zeilberger method, first variation, we can

compute
det(A2n)

det(A2n−1)
and

det(A2n+1)
det(A2n)

separately.

• However in practice, the computation was too big. We need
to go around to find a way to break this determinant into
some smaller pieces that are smaller to compute in parts.

• We will do this problem in 2 steps.
Step 1: we compute six different determinant and ratios of
determinants.
Step 2: we apply adjoint matrix theorem to conclude the
theorem.
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Solution to Krattenthaler’s Conjecture 2

• Let bn(I, J) :=

det
I≤i≤n−1+I,J≤j≤n−1+J

(
−δi,j +

(
µ+ i+ j − 2

j

))
.

We want to find bn(1, 1) when n is odd and even.

• Step1:
Show the formulas of the following by using Zeilberger method

b2n−1(0, 0) = 0.
b2n(0, 0)
b2n−1(1, 1)

= −1.

b2n(1, 0)
b2n−1(1, 0)

= Nice1.
b2n(0, 1)
b2n−1(0, 1)

= Nice2.

b2n+1(1, 0)
b2n(1, 0)

= Nice3.
b2n+1(0, 1)
b2n(0, 1)

= Nice4.
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Zeilberger Method, Second Variation

• To Show: b2n−1(0, 0) = 0.

• Let ai,j be an entry of the matrix An.
For each n ≥ 1, we find cn,j , 0 ≤ j ≤ 2n− 2, such that

cn,0

 a0,0

...
a2n−2,0

+ ...+ cn,2n−2

 a0,2n−2

...
a2n−2,2n−2

 =

 0
...
0

,

and there is j such that cn,j 6= 0.

• We can rewrite these conditions as
2n−2∑
j=0

cn,jai,j = 0, 0 ≤ i ≤ 2n− 2.

cn,2n−2 = 1.

• Note: In this problem, we are lucky enough that the
dimension of null space, for each n, is 1. There is no difficulty
in guessing the recurrences of cn,j .
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2n−2∑
j=0

cn,jai,j = 0, 0 ≤ i ≤ 2n− 2.

cn,2n−2 = 1.

• Note: In this problem, we are lucky enough that the
dimension of null space, for each n, is 1. There is no difficulty
in guessing the recurrences of cn,j .
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Zeilberger Method, Third Variation

• To Show:
b2n(0, 0)
b2n−1(1, 1)

= −1.

We again modify the original Zeilberger method.

• We apply Laplace expansion on the first row of the matrix
(instead of the n-th row) and set cn,0 = 1, (instead of
cn,2n−1 = 1). Here we consider only the matrix of even size,
just like in the first variation.

• The conditions that we have to verify are

cn,0 = 1.
2n−1∑
j=0

cn,jai,j = 0, 0 < i ≤ 2n− 1.

2n−1∑
j=0

cn,ja0,j = −1.
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Last four equations in Step 1

• To Show:
b2n(1, 0)
b2n−1(1, 0)

= Nice1.
b2n(0, 1)
b2n−1(0, 1)

= Nice2.

b2n+1(1, 0)
b2n(1, 0)

= Nice3.
b2n+1(0, 1)
b2n(0, 1)

= Nice4.

• Since these four equations are the ratio of the determinant
with the same starting point, we can handle them the same
way we did in Krattenthaler’s conjecture 1 by using Zeilberger
method, first variation.



Last four equations in Step 1

• To Show:
b2n(1, 0)
b2n−1(1, 0)

= Nice1.
b2n(0, 1)
b2n−1(0, 1)

= Nice2.

b2n+1(1, 0)
b2n(1, 0)

= Nice3.
b2n+1(0, 1)
b2n(0, 1)

= Nice4.

• Since these four equations are the ratio of the determinant
with the same starting point, we can handle them the same
way we did in Krattenthaler’s conjecture 1 by using Zeilberger
method, first variation.



Solution to Krattenthaler’s Conjecture 2: Step2

• Step2:

We show
b2n+1(1, 1)
b2n−1(1, 1)

and
b2n(1, 1)
b2n−2(1, 1)

using results from step

1 and Desnanot-Jacobi adjoint matrix theorem,

• Plug n→ 2n+ 2, n→ 2n+ 1 and n→ 2n in adjoint matrix
theorem then apply b2n−1(0, 0) = 0 to get
b2n+2(0, 0)b2n(1, 1) = −b2n+1(0, 1)b2n+1(1, 0) (1)
b2n(0, 0)b2n(1, 1) = b2n(0, 1)b2n(1, 0) (2)
b2n(0, 0)b2n−2(1, 1) = −b2n−1(0, 1)b2n−1(1, 0) (3)
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Solution to Krattenthaler’s Conjecture 2:
Step2(Continued)

• Next, we do (1)/(2) and (2)/(3) then apply
b2n(0, 0)
b2n−1(1, 1)

= −1

to get

b2n+1(1, 1)
b2n−1(1, 1)

= −b2n+1(1, 0)
b2n(1, 0)

b2n+1(0, 1)
b2n(0, 1)

.

b2n(1, 1)
b2n−2(1, 1)

= − b2n(1, 0)
b2n−1(1, 0)

b2n(0, 1)
b2n−1(0, 1)

.



Krattenthaler’s Conjecture 3

• Theorem
Let µ be an indeterminate. For any odd non-negative integer n
there holds

det
1≤i,j≤n

(
−δi,j +

(
µ+ i+ j − 2

j + 1

))
= (−1)(n−1)/22(n−1)(n+5)/4(µ+ 1)

(µ
2 − 1

)
(n+1)/2(

n+1
2

)
!

×

(n−1)/2∏
i=0

i!2

(2i)!2

b(n−1)/4c∏
i=0

(
µ

2
+ 3i+

3
2

)2

(n−4i−1)/2


×

b(n−3)/4c∏
i=0

(
−µ

2
− 3n

2
+ 3i+

5
2

)2

(n−4i−3)/2

 .



Solution to Krattenthaler’s Conjecture 3

• We noticed that this problem is very similar to the previous
problem. In fact, we can rewrite the problem in the form of
previous problem with shift of the starting points.

• det
1≤i,j≤2n−1

(
−δi,j +

(
µ+ i+ j − 2

j + 1

))
= det

2≤i,j≤2n

(
−δi,j +

(
(µ− 2) + i+ j − 2

j

))
= b2n−1(2, 2, µ− 2).

• Therefore we apply Zeilberger method, third variation, for the

formula of
b2n(1, 1, µ− 2)
b2n−1(2, 2, µ− 2)

.

• Since b2n(1, 1, µ− 2) is known from Krattenthaler’s
Conjecture 2. We are done.
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Zeilberger Method, Fourth Variation for bn/bn−K

• It is possible that the quotient of determinant that we are
interested are not of the consecutive n. Here again we
generalized Zeilberger method in another direction.

• This variation of Zeilberger method came from the block
matrix identity which states as following:

det(M) = det
(
M1 M2

M3 M4

)
= det(M1) det(M4−M3M

−1
1 M2).

• We were able to generalize Zeilberger method for (not only
bn
bn−1

)
bn

bn−K
for any fixed K ≥ 1.

• This variation is powerful. However the drawback is the bigger
calculation we have to deal with. From examples that we
faced so far, there is always a way to use other variation with
smaller computation.



Zeilberger Method, Fourth Variation for bn/bn−K

• It is possible that the quotient of determinant that we are
interested are not of the consecutive n. Here again we
generalized Zeilberger method in another direction.

• This variation of Zeilberger method came from the block
matrix identity which states as following:

det(M) = det
(
M1 M2

M3 M4

)
= det(M1) det(M4−M3M

−1
1 M2).

• We were able to generalize Zeilberger method for (not only
bn
bn−1

)
bn

bn−K
for any fixed K ≥ 1.

• This variation is powerful. However the drawback is the bigger
calculation we have to deal with. From examples that we
faced so far, there is always a way to use other variation with
smaller computation.



Zeilberger Method, Fourth Variation for bn/bn−K

• It is possible that the quotient of determinant that we are
interested are not of the consecutive n. Here again we
generalized Zeilberger method in another direction.

• This variation of Zeilberger method came from the block
matrix identity which states as following:

det(M) = det
(
M1 M2

M3 M4

)
= det(M1) det(M4−M3M

−1
1 M2).

• We were able to generalize Zeilberger method for (not only
bn
bn−1

)
bn

bn−K
for any fixed K ≥ 1.

• This variation is powerful. However the drawback is the bigger
calculation we have to deal with. From examples that we
faced so far, there is always a way to use other variation with
smaller computation.



Zeilberger Method, Fourth Variation for bn/bn−K

• It is possible that the quotient of determinant that we are
interested are not of the consecutive n. Here again we
generalized Zeilberger method in another direction.

• This variation of Zeilberger method came from the block
matrix identity which states as following:

det(M) = det
(
M1 M2

M3 M4

)
= det(M1) det(M4−M3M

−1
1 M2).

• We were able to generalize Zeilberger method for (not only
bn
bn−1

)
bn

bn−K
for any fixed K ≥ 1.

• This variation is powerful. However the drawback is the bigger
calculation we have to deal with. From examples that we
faced so far, there is always a way to use other variation with
smaller computation.


