Chapter 3

Descriptive Statistics: Numerical Methods

1 Central Tendency

mean = average median = the middle position value mode = the most frequency value(s)

2 Measures of Variation

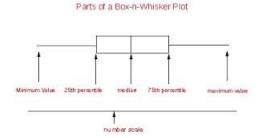
2.1 Range, Variance and Standard Deviation

- Range= max-min
- Population variance, $\sigma^2 = \frac{\sum (x_i \bar{x})^2}{N}$ Sample variance, $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$
- Population standard deviation, $\sigma = \sqrt{\sigma^2}$ Sample standard deviation, $s = \sqrt{s^2}$

2.2 Other Topics

• The empirical rules for normal distribution:

Area over $[\mu - \sigma, \mu + \sigma] = 68.26\%$


Area over $[\mu - 2\sigma, \mu + 2\sigma] = 95.44\%$

Area over $[\mu - 3\sigma, \mu + 3\sigma] = 99.73\%$

• $z \text{ score} = \frac{x - \mu}{\sigma}$

3 Box-and-Whiskers Plot

Position of the p^{th} percentile = $\frac{p}{100}(n+1)$.

$$IQR = Q_3 - Q_1$$

Inner fence = $Q_1 - 1.5 \cdot IQR$ and $Q_3 + 1.5 \cdot IQR$

4 Weighted Means and Grouped Data

Population mean,
$$\mu = \frac{\sum f_i M_i}{N}$$

Population variance, $\sigma^2 = \frac{\sum f_i (M_i - \bar{x})^2}{N}$
Sample mean, $\bar{x} = \frac{\sum f_i M_i}{n}$
Sample variance, $s^2 = \frac{\sum f_i (M_i - \bar{x})^2}{n-1}$