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Abstract

Consider a card guessing game with complete feedback in which a deck of
n cards ordered 1, . . . , n is riffle-shuffled once. With the goal to maximize the
number of correct guesses, a player guesses cards from the top of the deck one
at a time under the optimal strategy until no cards remain. We provide an
expression for the expected number of correct guesses with arbitrary number
of terms, an accuracy improvement over the results of Liu (2021). In addition,
using generating functions, we give a unified framework for systematically cal-
culating higher-order moments. Although the extension of the framework to
k ≥ 2 shuffles is not immediately straightforward, we are able to settle a
long-standing McGrath’s conjectured optimal strategy described in Bayer and
Diaconis (1992) by showing that the optimal guessing strategy for k = 1 riffle
shuffle does not necessarily apply to k ≥ 2 shuffles.

Dedicated to Doron Zeilberger on the occasion of his 70+1 birthday

Doron Zeilberger a.k.a. “Dr.Z” is a pioneer of symbolic computation. His Zeil-
berger’s algorithm, which automates the closed form calculation for hyper geometric
summation (e.g. [8, 10]), was a major breakthrough in the early 90’s in the field of
computer algebra. Being known for using a computer program as an experimental
tool, Dr.Z has demonstrated how the process of mathematical proof could be easier,
more accessible, extendable, and perhaps most importantly, enjoyable. We hope that
the technique we used in this paper reflects the true spirit of his research.

1. All theoretical results in this paper, from start to finish, were guided by Maple
program. We first have the slow program empirically count the number of
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permutations of n-card deck after k shuffles. Secondly, we find a recurrence
relation for the generating function whose resulting output agrees with that of
the slow program for small n and k. Lastly, we obtain the formulas of the rth
moment about the mean for any n-card deck with 1 shuffle. These formulas
are verified to make sure that they agree with the results obtained from the
recursive program for the generating function.

2. The moment calculus has been applied for a 1-time riffle shuffle. We calculate
the moments by evaluating the binomial sums (which also benefited from Zeil-
berger’s algorithm). In the end, we draw a conclusion about the distribution
of our object of interest.

3. Apart from evaluating the expression involving binomial sum, we appeal to the
method of undetermined coefficients. For instance, let us consider the central
binomial coefficient f(n) =

(
2n
n

)
which can be expressed through the recurrence

relation
(4n+ 2)f(n)− (n+ 1)f(n+ 1) = 0.

Using only the fact that the leading term of n! is
√

2πn
(
n
e

)n
, we solve for the

series approximation of f(n). The ansatz for the infinite series of f(n) is

f(n) =
4n√
πn

(
1 +

a1

n
+
a2

n2
+ . . .

)
.

Substituting this ansatz in the recurrence relation, we end up with system of
linear equations for the coefficients a1, a2, . . . , which can subsequently be used
to solve for as many coefficients as we wish.

1 Introduction

Many of us dream to visit the famous Monte Carlo casino, hoping to take advantage
of loopholes, winning big, and carry home a lot of money one day. While the casino
games are designed to make you lose money, Blackjack players can track the profile
of cards that have been dealt, and adapt their bet/playing strategies accordingly, so
whenever a basic strategy is used by a player, Blackjack’s house edge is usually as
low as 0.5%− 1%. Using a card counting strategy to determine the outcome of the
next hand could lead to a player advantage of up to 2%, which makes Blackjack a
high-profile target for card counters since the 1960s.

Although we will not teach you how to make a profit at the casino, in this article,
we discuss the optimal strategy to guess the next card in the n-card deck with full
information after some “riffle shuffling” has been performed. That is, a player guesses
cards one at a time starting from the top, and the identity of the card guessed is
revealed to the player after each guess. The goal is to maximize the total number
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of correct guesses after all n cards have been drawn. This situation resembles the
game of Blackjack as the players can adjust their next guess according to the known
information. Relying on a powerful generating function approach, we touch upon the
optimal strategy for guessing the next card, and discuss how to compute the expected
number, variance, and other higher moments of the number of correct guesses, etc.
This enables us to test if the asymptotic normality holds for the distribution of the
number of correct guesses.

Recently, Liu [6] investigated the 1-time riffle shuffle case, and obtained the first
two terms of the expression for the expected number of correct guesses for a deck
of n cards. In Section 2, we extend their results to any higher moments, each with
arbitrary number of terms, depending on the desired precision. The information
of the moments is then used to summarize the asymptotic distribution. In Section
3, we discuss the k-time riffle shuffle case by providing examples that tie together
the existing research findings. The difficulties that arise when trying to apply the
optimal strategy to k ≥ 2 riffle shuffles lead us to a counterexample for McGrath’s
conjectured optimal strategy mentioned in Bayer and Diaconis [2]. Finally, we state
open problems, give some applications, and directions for future work.

Gilbert-Shannon-Reeds (GSR) Model for Riffle Shuffles

A riffle shuffle [1] is a technique often used in practice when shuffling a deck of cards.
Consider a deck of n cards labeled consecutively from 1 to n (from top to bottom),
facing down on the table. Split the deck into two piles in such a way that the

probability of cutting the top t cards is

(
n
t

)
2n

. Then, interleave the piles back into a

single one. There are
(
n
t

)
ways to interleave the top and bottom piles, and all these

possibilities of interleaving are equally likely, so each interleaving has probability
1

2n
to come up.

Figure 1: Example of 1-time riffle shuffle of a deck of 5 cards

For a 1-time shuffle, the operation of interleaving described above gives rise to the
identity permutation (having one increasing subsequence) with multiplicity n + 1,
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while each of the permutations with two increasing subsequences has multiplicity
1. And so there are total number of 2n − n − 1 permutations of two increasing
subsequences from the interleaving. An example of 1-time shuffle of a 5-card deck is
illustrated in Figure 1. We can see that there are total of

(
5
2

)
ways to interleave the

top and bottom piles.

2 One-time Riffle Shuffle

Letting Xn be a random variable representing the number of correct guesses for the
n-card deck, we define the generating function to keep track of the distribution of
Xn in this section. A unified procedure to compute the rth factorial moment is
subsequently proposed through a recursive formula. Finally, the moments of the
distribution are used to summarize the asymptotic distribution of Xn concluding our
investigation for the 1-shuffle case.

2.1 Guessing Strategy and the Number of Correct Guesses

2.1.1 Optimal guessing strategy

The following proposition gives a refresher on the optimal guessing strategy for one-
time riffle shuffle [4, 6]. It summarizes the optimal strategy for guessing the first and
next card (after some number of cards have already been guessed at).

Proposition 1. (i) Assume a deck of n cards has been shuffled once. The probability
that the first card being m ∈ {1, . . . n} is

p(m) =


1

2
+

1

2n
if m = 1

(
n−1
m−1

)
2n

if m > 1.

Since p(1) > 1
2
, the optimal strategy is to guess card 1 as the first card.

(ii) Assume that the remaining deck has already been divided into two increasing
subsequences of length a and b. The probabilities that the next card is from the

subsequences of length a and b are
a

a+ b
and

b

a+ b
, respectively. Hence, the optimal

strategy is to guess the first card of the longer subsequence as the next card.

While the result (i) of the proposition is precisely the element M11 (for m = 1) and
Mm1 (for m > 1) of the transition matrix M introduced in Lemma 2.1 of [4], we give
a self-contained alternative proof below. The result (ii) is Proposition 3.1 of [6].
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Proof. To prove (i), we first consider the case when m = 1. Let N denote the
number of permutations whose top card is 1 (after riffle shuffling once). Depending
upon the cutting position t, N can be decomposed into N = N0 + N1 + . . . Nn,
where Nt, t = 0, 1, 2, . . . , n is the number of permutations whose first card is 1 given
that the cutting position is t before interleaving. Then, N0 = 1, and Nt =

(
n−1
t−1

)
for t = 1, 2, . . . , n. Thus, the total number of permutations whose first card is 1
(counting all multiplicities) becomes

N0 +
n∑
t=1

Nt = 1 +
n∑
t=1

(
n− 1

t− 1

)
= 1 + 2n−1,

and the result for the case when m = 1 follows.

When m > 1 (i.e. the cut was made just above card m), by fixing the first card to
be m, it is straightforward to see that the number of permutations whose top card
is m is

(
n−1
m−1

)
, which is the total number of ways to interleave the two subsequences

{1, 2, . . . ,m− 1} and {m+ 1, . . . n}.

The proof of (ii) relies on the fact that the distribution of the resulting interleaving
pile of the remaining portion of the deck is essentially uniform (Corollary 2.2 of [6]),
and so the next card comes from the subsequence of length a with probability(

a+b−1
a−1

)(
a+b
a

) =
a

a+ b
.

2.1.2 Expected number of correct guesses

Suppose a player follows the optimal guessing strategy. That is, guess 1 on the first
card, and if it turns out that his guess is correct, he continues to guess 2. Now, if the
revealed card is not 2, say m 6= 2, then this implies that the cut was made just above
card m, and so the two increasing subsequences at this stage are {2, 3, . . . ,m − 1}
and {m+1,m+2, . . . , n}. That is, the two increasing subsequences in the remaining
portion of the deck can be determined by the available feedback information. His next
guess is then either 2 or m+ 1 depending on the length of the two subsequences. He
continues guessing in this way until the deck is completed. Note that if at some point
the lengths a = b, we assume the player chooses the lower number, e.g. min{2,m+1}
in this case.

Now, using the optimal strategy, what is the expected number of correct guesses? To
answer this question, let us examine the distribution of permutations after shuffling a
4-card deck once. Figure 2 lists all possible permutations along with the probability
and the number of correct guesses for a 4-card deck under the optimal strategy.
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Figure 2: All possible permutations after shuffling a 4-card deck once. The color
indicates a correct guess under the optimal strategy.

Let Xn denote a random variable representing the number of correct guesses (under
the optimal strategy) after shuffling an n-card deck once. The expected number of
correct guesses, E[Xn], can then be computed using the information of the permu-
tation probability distribution. e.g. for a 4-card deck, one can easily obtain

E[X4] =
4∑

x=2

xP (X4 = x) =

(
2× 5

16

)
+

(
3× 6

16

)
+

(
4× 5

16

)
= 3.

2.2 Generating Functions

2.2.1 A recurrence relation for the generating function: motivation

Let Dn(q) be the (counting) generating function of the number of correct guesses
after shuffling a deck of n cards once, i.e.

Dn(q) =
∞∑
i=0

aiq
i,

where ai denotes the number of permutations with i correct guesses. For example,
for a 4-card deck,

D4(q) = a2q
2 + a3q

3 + a4q
4

= 5q2 + 6q3 + 5q4.

Observe also the connection between E[Xn] and the derivative of Dn(q) w.r.t. q:

E[Xn] =
D′n(q)|q=1

2n
.

While our goal is to find a recurrence relation for Dn(q), we will first examine the
4-card deck example, in an attempt to re-express D4(q) as a function of D3(q).
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Recurrence relation for D4(q)

Figure 3 illustrates the procedure for finding D4(q) in a recursive manner. In essence,
D4(q) is decomposed into two parts depending on the identity of the first card.

Figure 3: Recurrence structure D4(q) = (q4 + qD3(q)) + F (1, 2; q) + F (2, 1; q) + F (3, 0; q)

Part 1: the first card being 1. Ignoring the first card for a moment, notice how
the permutations of the shuffled 3-card deck are embedded as part of the shuffled
4-card deck. In particular, the correctness of the ith guess of the 3-card deck is the
same as that of the (i + 1)th guess of the 4-card deck. Adding back the first card
(which is a correct guess under our optimal strategy) yields qD3(q). Since the number
of the identity permutation (having one increasing subsequence) for a shuffled n-card
deck is n + 1, it is easy to see why the total contribution to D4(q) from this part is
q4 + qD3(q).

Part 2: the first card greater than 1. As for the other three cases when the first
card is greater than 1, guessing the first card under the optimal strategy (i.e. guessing
1) will contribute zero to the total number of correct guesses. However, the identity
of the first card lets the player deduce as to what the two increasing subsequences are.
For example, if the first card is revealed to be 2, the player knows immediately that
the two increasing subsequences for the next stage are {1} and {3, 4}. If however 3
is revealed as the first card, then the two increasing subsequences are {1, 2} and {4}.
Finally, if 4 is revealed as the first card, then the two increasing subsequences are
{1, 2, 3} and { }, the empty set. In all these cases, the player can guess the next card
according to the optimal strategy. We thus subsequently define a function F (i, j; q)
to collect the contribution of the number of correct guesses, where i and j simply
represent the lengths of the two increasing subsequences revealed by the identity of
the first card. In particular, using the number of correct guesses given in Figure 2,
it is obvious that F (1, 2; q) = F (2, 1; q) = q3 + 2q2, and F (3, 0; q) = q3.

Finally, combining the contributions from two parts, the recurrence relation for D4(q)
is expressed as

D4(q) =
(
q4 + qD3(q)

)
+ F (1, 2; q) + F (2, 1; q) + F (3, 0; q).
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2.2.2 General case

Now that we have introduced the recurrence relation for D4(q), we will proceed to
define a recursive formula for Dn(q), and go on to find a solution to F (m,n; q) and
eventually to Dn(q).

Along the same lines as D4(q), the recursive definition of Dn(q) comes from the
contributions of two parts:

Dn(q) = qDn−1(q) + qn︸ ︷︷ ︸
the first card = 1

+
n−2∑
i=0

F (n− 1− i, i; q)︸ ︷︷ ︸
the first card > 1

, (1)

where D0(q) = 1.

By conditioning on the identity of the next card, under the optimal strategy (i.e.
guessing the first card of the longer subsequence as the next card), F (m,n; q) can be
defined recursively as

F (m,n; q) = qF (m− 1, n; q)︸ ︷︷ ︸
next card from longer subsq.

+ F (m,n− 1; q)︸ ︷︷ ︸
next card from shorter subsq.

, (2)

for m ≥ n, where F (m, 0; q) = qm.

Remark. Let us note that under the optimal strategy (which guesses the longer
subsequence), the equality F (m,n; q) = F (n,m; q) holds for any m,n. In particular,
F (m,n; q) = F (n,m; q) whenever m < n. Hence, the recurrence relation as defined
in (2) indeed covers all cases of m,n.

The following proposition gives a solution to the recursive function F (m,n; q).

Proposition 2. For m ≥ n,

F (m,n; q) =
n∑
i=0

[(
m+ n

i

)
−
(
m+ n

i− 1

)]
qm+n−i. (3)

Proof. When n = 0, the right hand side of (3) becomes qm
(
m
0

)
= qm where

(
m
−1

)
= 0

by convention. We now prove formula (3) by induction on m+ n.
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F (m,n; q) = qF (m− 1, n; q) + F (m,n− 1; q)

=
n∑
i=0

[(
m+ n− 1

i

)
−
(
m+ n− 1

i− 1

)]
qm+n−i +

n−1∑
i=0

[(
m+ n− 1

i

)
−
(
m+ n− 1

i− 1

)]
qm+n−1−i

= qm+n +
n∑
i=1

([(
m+ n− 1

i

)
+

(
m+ n− 1

i− 1

)]
−
[(
m+ n− 1

i− 1

)
+

(
m+ n− 1

i− 2

)])
qm+n−i

= qm+n +
n∑
i=1

[(
m+ n

i

)
−
(
m+ n

i− 1

)]
qm+n−i (by Pascal’s triangle rule)

=
n∑
i=0

[(
m+ n

i

)
−
(
m+ n

i− 1

)]
qm+n−i.

The first equality is from the recurrence relation (2) and the second equality is by
the induction hypothesis.

2.3 Moment Calculus

In this section, we present a derivation of factorial moments in a unified manner, and
give expressions for the moments about the mean. The asymptotic distribution of the
number of correct guesses will eventually be determined. For the sake of simplicity,
the subscript n of X is omitted in the following analysis.

Let us consider the rth factorial moment of X

E[X(X − 1) . . . (X − r + 1)] =
D

(r)
n (q)|q=1

2n
. (4)

We first rearrange the recurrence relation of Dn(q)

Dn(q) = qDn−1(q) +Gn(q), (5)

where Gn(q) is defined by

Gn(q) = qn +
n−2∑
i=0

F (n− 1− i, i; q). (6)

Successively differentiating both sides of (5) r times (r ≥ 1) w.r.t. q and substituting
in q = 1, we get

D(r)
n (q)|q=1 = D

(r)
n−1(q)|q=1 + rD

(r−1)
n−1 (q)|q=1 +G(r)

n (q)|q=1. (7)

Thus, the rth factorial moment can be determined by the following procedure.
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Procedure: Factorial Moment (fixed r, formula in n)

1: Compute G
(r)
n (q)|q=1 by the binomial sum, n symbolic.

2: Use the method of undetermined coefficient to calculate D
(r)
n (q)|q=1.

3: Apply (4) to obtain E[X(X − 1) . . . (X − r + 1)].

2.3.1 Closed-form formula for G
(r)
n (q)|q=1

Treating n as a symbolic variable, we consider Gn(q) in (6) separately for the cases
of even and odd n.

Gn(q) =


q2k − q2k−1 + 2

∑k−1
j=0 F (2k − 1− j, j; q) if n = 2k,

q2k+1 − q2k + F (k, k; q) + 2
∑k−1

j=0 F (2k − j, j; q) if n = 2k + 1.

Applying Proposition 2 and interchanging the order of summation, we obtain

k−1∑
j=0

F (2k − 1− j, j; q) =
k−1∑
j=0

j∑
i=0

[(
2k − 1

i

)
−
(

2k − 1

i− 1

)]
q2k−1−i

=
k−1∑
i=0

k−1∑
j=i

[(
2k − 1

i

)
−
(

2k − 1

i− 1

)]
q2k−1−i

=
k−1∑
i=0

(k − i)
[(

2k − 1

i

)
−
(

2k − 1

i− 1

)]
q2k−1−i.

A similar argument applies to
∑k−1

j=0 F (2k − j, j; q). Therefore,

Gn(q) =


q2k − q2k−1 + 2

∑k−1
i=0 (k − i)

[(
2k−1
i

)
−
(

2k−1
i−1

)]
q2k−1−i if n = 2k,

q2k+1 − q2k + 2
∑k

i=0(k + 1
2
− i)

[(
2k
i

)
−
(

2k
i−1

)]
q2k−i if n = 2k + 1.

Hence, the following results follow immediately.

Proposition 3. For r ≥ 1, the closed-form formula for G
(r)
n (q)|q=1 can be obtained

by evaluating the binomial sums:

G
(r)
2k (q)|q=1 = (2k)r−(2k−1)r+2

k−1∑
i=0

(k−i)
[(

2k − 1

i

)
−
(

2k − 1

i− 1

)]
(2k−1−i)r, (8)

G
(r)
2k+1(q)|q=1 = (2k+ 1)r− (2k)r + 2

k∑
i=0

(k+
1

2
− i)

[(
2k

i

)
−
(

2k

i− 1

)]
(2k− i)r, (9)

where (a)r is the falling factorial, i.e. (a)r = a(a− 1)(a− 2) . . . (a− r + 1).
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We can evaluate the above binomial summations in closed form and obtain a simpler
expression for G

(r)
n (q)|q=1. This can be done either by hand (which could be over-

whelming) or by a computer program. Here, we give an example for zero- and first-
order moments.

2.3.2 Zero- and first-order moments

The zeroth moment corresponds to the number of ways to do one-time riffle shuffle.
Using (3), we deduce that F (m,n; 1) =

(
m+n
n

)
, and a straightforward computation

from (6) gives

Gn(1) = 1 +
n−2∑
i=0

(
n− 1

i

)
= 2n−1.

From (5), we get the recurrence

Dn(1) = Dn−1(1) + 2n−1

whose solution is
Dn(1) = 2n.

To obtain the first moment, we follow the three-step procedure. When r = 1, (7)
becomes

D′n(q)|q=1 = D′n−1(q)|q=1 +Dn−1(1) +G′n(q)|q=1, (10)

where Dn−1(1) = 2n−1 by the zeroth moment.

Maple program CloseGr(1,k) in Appendix B is used to evaluate the binomial sum-
mation in (8) and (9) to get

G′2k(q)|q=1 =
k − 1

2
4k + k

(
2k

k

)
+ 1,

G′2k+1(q)|q=1 =
2k − 1

2
4k +

4k + 1

2

(
2k

k

)
+ 1.

Substituting these two equations back to (10) separately for odd and even n, D′2k+1(q)|q=1

and D′2k(q)|q=1 can be determined.

In particular, for n = 2k + 1,

D′2k+1(q)|q=1 = D′2k−1(q)|q=1 +
k

2
4k + k

(
2k

k

)
+ 1 +

2k + 1

2
4k +

4k + 1

2

(
2k

k

)
+ 1.

Simplifying the equation and writing expression in terms of n,

D′n(q)|q=1 = D′n−2(q)|q=1 +
3n− 1

8
2n +

3n− 2

2

(
n− 1

(n− 1)/2

)
+ 2. (11)
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Subsequently, D′n(q)|q=1 is solved by the method of undetermined coefficients, i.e.

for the term
3n− 1

8
2n, we assume the solution to be in the form

(an+ b)2n. (ansatz1)

It is known however that a closed form formula does not exist for
∑n

k=0 P (k)
(

2k
k

)
,

where P (k) is a fixed polynomial in k, i.e. not Gosper-summable. Hence, for the

term
3n− 2

2

(
n−1

(n−1)/2

)
, we assume a solution of the form(

a0

√
n+

a1√
n

+
a2

n3/2
+ . . .

)
2n. (ansatz2)

Infinite series of the central binomial is given in Appendix A for reference.

The constant term in (11) and the general solution C1 + C2(−1)n of D′n(q)|q=1 =
D′n−2(q)|q=1 are asymptotically negligible. We thus solve the two parts separately,
and then combine their results.

The final solution (from Maple program ForDr(1,1,5,n) in Appendix B) is

D′n(q)|q=1 = (n−1)2n−1+2n
√

2n

π

(
1− 3

4n
− 53

96n2
− 443

384n3
− 75949

18432n4
− 4621519

221184n5
− . . .

)
.

Now as E[X] =
D′n(q)|q=1

2n
, the expectation for the case when n = 2k+ 1 is given by

E[X] =
n

2
+

√
2n

π
− 1

2
−
√

2

πn

(
3

4
+

53

96n
+

443

384n2
+

75949

18432n3
+

4621519

221184n4
+ . . .

)
.

In a similar manner, we obtain the expected value for the case when n = 2k:

E[X] =
n

2
+

√
2n

π
− 1

2
−
√

2

πn

(
3

4
+

49

96n
+

439

384n2
+

76709

18432n3
+

4628519

221184n4
+ . . .

)
.

Note that these results improve the following main result of [6]

E[X] =
n

2
+

√
2n

π
+O(1).
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The calculation behind the particular solution for
3n− 2

2

(
n− 1

(n− 1)/2

)
We use this opportunity to show, as an illustration, the calculation of the first few

terms of the particular solution of the term
3n− 2

2

(
n− 1

(n− 1)/2

)
. While most text-

books on elementary differential equations discuss the method of undetermined co-
efficients (e.g. [3, Chapter 3.5]), it is worth the extra effort to discuss this in more
detail here, especially the calculations for those terms involving the one-half power.

We start by reminding the reader the Taylor series expansion at n =∞ for the terms

such as
√
n− 2 and

1√
n− 2

:

√
n− 2 =

√
n− 1√

n
− 1

2n3/2
+ . . . ,

1√
n− 2

=
1√
n

+
1

n3/2
+

3

2n5/2
+ . . . .

Now, let us solve the relation

D′n(q)|q=1 = D′n−2(q)|q=1 +
3n− 2

2

(
n− 1

(n− 1)/2

)
. (12)

We first calculate the expansion of the binomial term (using Appendix A):

3n− 2

2

(
n− 1

(n− 1)/2

)
=

3n− 2

2
· 1√

π

(
1√

(n− 1)/2
− 1

8((n− 1)/2)3/2
+

1

128((n− 1)/2)5/2
+ . . .

)
4(n−1)/2

=
3n− 2

2
· 1√

π

(
√

2

(
1√
n

+
1

2n3/2
+

3

8n5/2
+ . . .

)
− 23/2

8

(
1

n3/2
+

3

2n5/2
+

15

8n7/2
+ . . .

)
+ . . .

)
2n−1,

where the last equality follows from the Taylor series of
1√
n− 1

and
1

(n− 1)3/2
.

We see that it makes sense to search for a solution in the form of (ansatz2):

D′n(q)|q=1 =

(
a0

√
n+

a1√
n

+
a2

n3/2
+ . . .

)
2n. (13)

It follows that

D′n−2(q)|q=1 =

(
a0

√
n− 2 +

a1√
n− 2

+
a2

(n− 2)3/2
+ . . .

)
2n−2

= a0

(√
n− 1√

n
− 1

2n3/2
+ . . .

)
2n−2 + a1

(
1√
n

+
1

n3/2
+

3

2n5/2
+ . . .

)
2n−2 + . . . .
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We proceed to compare the coefficients of the same terms and solve for a0 and a1.

Substituting the expressions of D′n−2(q)|q=1 and
3n− 2

2

(
n− 1

(n− 1)/2

)
into (12), and

comparing the coefficient of
√
n · 2n appearing in (12) and (13), we obtain

a0 =
a0

4
+

3
√

2

4
√
π
.

Hence, a0 =

√
2

π
.

Similarly, by comparing the coefficient of
1√
n
· 2n in (12) and (13), we obtain

a1 =
a1 − a0

4
−
√

2

2
√
π

+
3

4
√
π

(√
2

2
− 1

2
√

2

)
,

and so a1 = −3

4

√
2

π
.

As the number of terms increases, the calculations inevitably become more tedious.
Therefore, we use the symbolic computation program to find other coefficients in the
expansions.

2.3.3 Higher factorial moments

Along the same line as that of the first moment, higher factorial moments can be ob-
tained following the three-step procedure. We give expressions to E[X(X−1) . . . (X−
r + 1)] for r = 2, 3 below.

For odd n:

E[X(X − 1)] =
n2

4
+

√
2

π
n3/2 − n

4
−
√

2n

π

(
11

4
+

5

96n
+

1753

1152n2
+

13733

2048n3
+ . . .

)
.

For even n:

E[X(X − 1)] =
n2

4
+

√
2

π
n3/2 − n

4
−
√

2n

π

(
11

4
+

1

96n
+

1901

1152n2
+

13917

2048n3
+ . . .

)
.

For odd n:

E[X(X−1)(X−2)] =
n3

8
+

3

4

√
2

π
n5/2−65

16

√
2

π
n3/2−13n

8
+

√
2n

π

(
763

128
− 2681

1536n
− 443239

73728n2
+ . . .

)
.

14



For even n:

E[X(X−1)(X−2)] =
n3

8
+

3

4

√
2

π
n5/2−65

16

√
2

π
n3/2−13n

8
+

√
2n

π

(
767

128
− 3085

1536n
− 413903

73728n2
+ . . .

)
.

2.3.4 Moments about the mean

To complement the expression of the rth factorial moment, we find explicit expres-
sions for the moments about the mean. The rth raw moment (which later leads to
the moment about the mean) can be computed from the factorial moments through
the relation:

E[Xr] =
r∑
i=0

{r
i

}
E[(X)i],

where
{r
i

}
is the Stirling number of the second kind.

For the sake of brevity, we give examples for the case when n is even, and r = 2, 3.

When n is even,

E[(X − µ)2] =

(
3

4
− 2

π

)
n− 3

4
+

3

π
−
√

2

πn
+

11

12πn
+ . . . .

E[(X − µ)3] =√
2

π

((
4

π
− 5

4

)
n3/2 +

(
43

16
− 9

π

)
n1/2 − 3

√
2π

4
+ 3

√
2

π
−
(

241

128
− 5

8π

)
1√
n

+ . . .

)
.

The expressions up to order 12 for both even and odd n along with the Maple
program used to generate E[(X−µ)r] and E[X(X−1) . . . (X−r+1)] are provided at
https://thotsaporn.com/Card1.html. A brief description of the Maple programs
used to evaluate results of this paper is given in Appendix B.

2.4 Asymptotic Distribution of the Number of Correct Guesses

The skewness coefficient is given by m3

m
3/2
2

, where mr := E[(X − µ)r] is the rth moment

about the mean. Using the expression for mr derived in the previous section, we see that
the skewness of Xn does not tend to zero (and hence not symmetric). Therefore, the
number of correct guesses is not asymptotically normally distributed [9].

Histograms illustrating the distribution of Xn for various n are shown in Figure 4. We
see clearly that the histogram has right-skewed distribution inconsistent with asymptotic
normality.
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Figure 4: Probability histograms of the number of correct guesses when n varies.
The red vertical line indicates the corresponding expected value E[Xn].

3 Generalization to k riffle shuffles: is it possible?

Combinatorial interpretation

We see earlier that shuffling a deck of n card once, the identity permutation (one increasing
subsequence) has a multiplicity of n + 1, while a permutation with two increasing subse-
quences has a multiplicity 1. In fact, the multiplicity of a permutation π after k shuffles is
closely related to the number of increasing subsequences in π. We state without proof the
following result established in [2].

Proposition 4 (Theorem 1 of [2]). Let the permutation π of length n be the resulting deck
after k shuffles. Let m be the number of increasing subsequences of π, 1 ≤ m ≤ 2k. The
multiplicity of π after k shuffles is (

n+ 2k −m
n

)
.

Example 1 (Multiplicity of π). Shuffling a deck of 3 cards twice (n = 3, k = 2),

• the multiplicity of [1, 2, 3] is
(

3+4−1
3

)
= 20;

• the multiplicity of each of [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2] is
(

3+4−2
3

)
= 10;

• the multiplicity of [3, 2, 1] is
(

3+4−3
3

)
= 4.
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Thus, the total number of permutations (including the multiplicities) is (1 × 20) + (4 ×
10) + (1 × 4) = 26. It is easy to see that in general there are 2kn permutations produced
by k shuffles of an n-card deck.

We now digress temporarily to present some results concerning π−1, the inverse permuta-
tion, through the following illustration.

Example 2 (Inverse permutation, π−1). Consider π = [5, 3, 4, 6, 1, 7, 2, 8, 9, 10] which has
three increasing subsequences, namely, [5, 6, 7, 8, 9, 10], [3, 4] and [1, 2]. Now, since π−1 =
[5, 7, 2, 3, 1, 4, 6, 8, 9, 10], it leads to two descents, namely, [7, 2], [3, 1] and three permutation
runs, [ 5, 7︸︷︷︸

run 1

| 2, 3︸︷︷︸
run 2

| 1, 4, 6, 8, 9, 10︸ ︷︷ ︸
run 3

]. Essentially, if π is a permutation after k shuffles with m

increasing subsequences, then π−1 is the permutation with m− 1 descents and m runs.

Through the concept of m runs of the inverse riffle shuffles, one can give a combinatorial
proof (for the special case, x = 2k) of Worpitzky’s identity [7]:

xn =

x∑
m=1

A(n,m− 1)

(
n+ x−m

n

)
,

where A(n, r) is the number of permutations of length n with r descent positions. This
special case x = 2k for some k gives a formula to the total number of permutations produced
by k shuffles of an n-card deck.

Optimal guessing strategy for the k riffle shuffles: a computational approach

While Proposition 1 gives a clear strategy of how to guess the cards for one shuffle, things
are not so clear for k shuffles, k ≥ 2. To collect the data, we apply the program Best
Guess to sequentially output the best guess at each stage (after each card is revealed) for
an n-card deck after k riffle shuffles.

Program: Best Guess (fixed n, k)

Goal: Find the most likely number to show up next
Input: The list of the already revealed cards, S
Compute: The number of ways that the number i will show up as the next card

Ni =
∑

π∈Πn[S,i]

(
n+ 2k −mπ

n

)
, (14)

where Πn [S, i] is the set containing all permutations of length n that start with
elements in S, appended by number i. Here, mπ is the number of increasing
subsequences of π.
Output: The best guess

i∗ := argmax
i

Ni

The binomial in Equation (14) represents the multiplicity of π after k shuffles (Proposition
4). The number i∗ will be the optimal guess for the next card.
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The challenge of writing the program is to quickly generate π (starting with S and i)
along with counting the number of increasing subsequences of it. For this purpose, two
versions of the above program were implemented to validate the results. The first pro-
gram, SlowBG(n,k,S), counts π in a rather straightforward way, i.e. list all the permu-
tations in Πn [S, i] that begin with S, prior to starting calculation. The faster program
FastBG(n,k,S), on the other hand, generates a permutation which begins with elements
S and i in a recursive manner (i.e. appending a number to the permutation one at a time)
while keeping track of the number of increasing subsequences at each stage.

Having to calculate the optimal guess at each stage seems to make it impossible to set
up a convenient recurrence formula for the generating functions of the number of correct
guesses (as in the case of 1-time shuffle). We leave this as an open question.

Open Question: Find the optimal strategy for guessing the next card of the k riffle
shuffles, k ≥ 2.

A counterexample

In the process of searching for the optimal strategy via SlowBG(n,k,S)/FastBG(n,k,S),
we were able to settle a conjectured optimal strategy due to McGrath described three
decades ago in Bayer and Diaconis [2, Section 5.1], which assumed the optimal strategy for a
1-time shuffle applies also for k ≥ 2. The conjecture later appeared as the eighth problem on
a list of ten unsolved problems in Diaconis [5, Section 5]. We give a concrete counterexample
to disprove McGrath’s conjectured optimal strategy in the following corollary.

Corollary 5. The optimal guessing strategy for k-time riffle shuffles needs not be the same
as the optimal strategy for a 1-time riffle shuffle (i.e. guessing the next card from the longer
subsequence) as in Proposition 1.

Proof. We shall give a counterexample for this purpose. Consider a deck of 10 cards that
has been shuffled twice (n = 10, k = 2). Now, suppose it is revealed that the first card is
5. Following the conjectured optimal strategy, one would guess 6 as the next card because
the remaining subsequences are {1,2,3,4} and {6,7,8,9,10} with the latter being a longer
subsequence. However, careful calculations show that the probability that 1 is the next

card is
31752

105336
, while the probability that 6 is the next card is

31570

105336
. The command

SlowBG(10,2,[5]) or FastBG(10,2,[5]) outputs these two probabilities (along with the
probabilities that card number i will be the next card after 5, for i = 1, . . . , 10).

The above example with n = 10 and k = 2, in fact, is the smallest counterexample, i.e. the
smallest n for 2 shuffles. As the total number of permutations of this example is 22×10 and
the difference between the two probabilities is as small as 182

105336 , it is obvious that finding
such a counterexample is a non-trivial task.
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4 Last But Not Least

Indicator for the randomness of the deck

Perhaps one of the most popular questions that people ask around this topic is “Is my
deck random enough?”. One way to answer this question is to examine the randomness of
the shuffled deck through the expected number of correct guesses and compare it to the
expected number of correct guesses for a completely random deck.

For example, let us consider a deck of two cards. Let ek denote the expected number of
correct guesses as a function of shuffle number k. Then, ek, k = 0, 1, 2, . . . , turn out to be

2,
7

4
,
13

8
,
25

16
,
49

32
,
97

64
,
193

128
,
385

256
,
769

512
, . . . .

On the other hand, the expected number of correct guesses for a randomly shuffled deck is

E[Y ] =
1

2
+ 1 =

3

2
.

Thus, using E[Y ] as a target value, if the threshold value is chosen, say, as 5% on the
relative residual, i.e.

∣∣ ek−1.5
1.5

∣∣ < 0.05 in our case, then we need to shuffle the deck 3 times.

Now, for the deck of three cards, we have that ek, k = 0, 1, 2, . . . , are

3,
19

8
,
67

32
,
251

128
,
971

512
,
3819

2048
,
15147

8192
,
60331

32768
,
240811

131072
, . . . ,

while

E[Y ] =
1

3
+

1

2
+ 1 =

11

6
.

With the 5% threshold from the target value, we will need to shuffle the deck 4 times. This
idea was discussed before in Section 5.1, a different distance, of [2].

The calculation behind the sequence ek above

Consider a deck of n cards. Let πs be a permutation of length n, 1 ≤ s ≤ n!. The expected
number of correct guesses of the deck after k shuffles is

ek = E[X] =
n!∑
s=1

C(k)
s · P (k)

s , (15)

where P
(k)
s is the probability of getting the permutation πs after k shuffles, and C

(k)
s is the

number of correct guesses of πs based on the optimal strategy. Here, P
(k)
s =

(
n+2k−ms

n

)
2kn

,

while the optimal strategy leading to C
(k)
s has to be calculated specifically for each n and k

following the program provided in the previous section. We give a simple example below.

19



Example 3 For n = 3, we let π1 = [1, 2, 3], π2 = [1, 3, 2], π3 = [2, 1, 3], π4 = [2, 3, 1], π5 =
[3, 1, 2] and π6 = [3, 2, 1]. Then m1, the number of increasing subsequences of π1, is 1 while
m2 = m3 = m4 = m5 = 2 and m6 = 3. Finally, it can be shown that the optimal strategy
for a 3-card deck is the same for all k, i.e. guess the smallest number that has not shown

up yet, and as a result C
(k)
1 = 3, C

(k)
2 = C

(k)
3 = C

(k)
5 = 2, C

(k)
4 = C

(k)
6 = 1.

Future work

On one hand, finding an optimal guessing strategy for k ≥ 2 shuffles, or seeing if it even
exists could be a crucial stepping stone towards one direction for future work. On the other
hand, we believe that tackling the card guessing version for k ≥ 2, with no response (as
considered by Ciucu in [4]), where the correctness of all the guesses is only revealed at the
end of the game, seems to be a more promising direction for future work.
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Appendix A: Asymptotic approximation of
(

2n
n

)
This section of the Appendix is intended to be a handy reference to the standard method
used to derive the infinite series formula for the central binomial.

Starting with

lnn! ≈ ln
(√

2πnn+ 1
2 e−n

)
+

∞∑
i=1

B2i

2i(2i− 1)n2i−1
,

where Bk is a Bernoulli number, we have

ln

(
2n

n

)
= ln(2n)!− 2 lnn! = ln

(
4n√
πn

)
−
∞∑
i=1

B2i

i(2i− 1)n2i−1

[
1− 1/22i

]
.

Finally, by Taylor series, we obtain(
2n

n

)
≈ 4n√

πn

(
1− 1

8n
+

1

128n2
+

5

1024n3
− 21

32768n4
+ . . .

)
.

Appendix B: Summary of Maple programs

This section summarizes main programs used in each section. All Maple programs accom-
panying this paper are provided at https://thotsaporn.com/Card1.html.

Section 1: Introduction

Decks(n)
Input: Positive integer n
Output: List of deck of n cards after 1 shuffle
Try: Decks(3);

CorrectD(D)
Input: List of deck D from one shuffle
Output: Number of correct guesses of deck D
Try: CorrectD([1,2,3,4]);

Section 2: One-time Riffle Shuffle

GenD(n,q)
Input: Positive integer n and symbolic q
Output: Generating function of deck of n cards calculated by recurrence (5)
Try: GenD(15,q);
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CloseGr(r,k)
Input: Positive integer r and symbolic k

Output: Closed form for G
(r)
n (q)|q=1 in terms of k for odd and even n in Proposition 3

Try: CloseGr(3,k);

ForDr(r,s,K,n)
Input: Positive integer r, parity 0 or 1 for s, positive integer K ≥ r and symbolic n

Output: Formula in n for D
(r)
n (q)|q=1 for odd n (s = 1) or even n (s = 0) with about K

terms of accuracy
Try: ForDr(1,1,5,n);

CheckDr(n,r,K)
Input: Positive integer n, r and K with K ≥ r
Output: Relative error of the value obtained with ForDr(r,s,K,n) to the exact value
Try: CheckDr(150,1,15);

ForFacM(r,s,K,n)
Input: Positive integer r, parity 0 or 1 for s, positive integer K ≥ r and symbolic n
Output: Formula of factorial moment E[(X)r] in n for odd n (s = 1) or even n (s = 0)
with about K terms of accuracy
Try: ForFacM(3,1,5,n);

MoMean(r,s,K,n)
Input: Positive integer r, parity 0 or 1 for s, positive integer K ≥ r and symbolic n
Output: Formula of moment about the mean E[(X − µ)r] in n for odd n (s = 1) or even
n (s = 0) with about K terms of accuracy
Try: MoMean(3,1,5,n);

Section 3: Generalization to k Riffle Shuffles: Is it possible?

KShuff(n,k)
Input: Positive integers n and k
Output: List of deck of n cards, with multiplicities, after shuffling k times
Try: KShuff(4,4);

SlowBG(n,k,S), FastBG(n,k,S)
Input: Positive integer n and k, the list of all revealed cards S
Outputs: 1. The number that is most likely to show up next (after S) from the deck of
n cards with k shuffles; 2. The list containing the numbers of ways that card number
i, 1 ≤ i ≤ n will be the next card (after S) after k riffle shuffles.
Try: FastBG(5,2,[3]); or SlowBG(10,2,[5]); or FastBG(10,2,[5]);

Section 4: Last But Not Least

Dora2(k), Dora3(k)
Input: Positive integer k
Output: The expected number of correct guesses after k shuffles of deck of 2 (or 3) cards
Try: [seq(Dora3(k),k=0..10)];
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