Practice Problems for Midterm Exam.

- 1. Given the points $P_1 = (2, 1, 6), P_2 = (4, 7, 9), \text{ and } P_3 = (11, 7, -12).$
 - a) Find the distance from P_1 to P_2 .

b) Find the vector with length 2 and has opposite direction to the vector $\overrightarrow{P_1P_2}$.

c) Show that the vector $\overrightarrow{P_1P_2}$ is orthogonal (perpendicular) to the vector $\overrightarrow{P_1P_3}$.

- 2. a) **True-False** Determine whether the statement is true or false. Explain your answer.
 - i) _____ If $\mathbf{v} \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{w}$ and $\mathbf{v} \neq 0$, then $\mathbf{u} = \mathbf{w}$.
 - ii) _____ If **u** is a unit vector that is parallel to a nonzero vector **v**, then $\mathbf{u} \cdot \mathbf{v} = \pm \|\mathbf{v}\|$.

b) Use a determinant to find the cross product

$$\mathbf{i}\times(\mathbf{i}+\mathbf{j}+\mathbf{k})$$

3. a) i) Find parametric equations of the line L passing through the points $P_1(2, 4, -1)$ and $P_2(5, 0, 7)$.

ii) Where does the line intersect the xy-plane?

b) Show that the lines L_1 and L_2 intersect, and find their point of intersection.

$$L_1: x = 1 + 2t, \quad y = 3t, \quad z = 2 - t$$

$$L_2: x = -1 + s, \quad y = 4 + s, \quad z = -18 + s.$$

4. a) Determine whether the line

$$L: x = 3 - 2t, \quad y = 2 + 6t, \quad z = 5 + 2t$$

is parallel to the plane x + y - 2z = 9.

b) Find an equation of the plane that passes through (-1,4,-3) and is perpendicular to the line

$$x = 2 + t$$
, $y = -3 + 3t$, $z = -t$.

5. Find the length of the curve $\mathbf{r}(t) = \langle t^3, t, \frac{\sqrt{6}}{2} t^2 \rangle$, $2 \le t \le 4$.

Answers

1. a) 7 b)
$$\frac{-2}{7}\langle 2, 6, 3 \rangle$$
 c) $\overrightarrow{P_1P_2} \cdot \overrightarrow{P_1P_3} = \langle 2, 6, 3 \rangle \cdot \langle 9, 6, -18 \rangle = 0$.

2. a) F,T b)
$$-{\bf j} + {\bf k}$$

3. a) i) $x=2+3t, y=4-4t, z=-1+8t, t\in \mathbb{R}$ (note: the answer can be written in other forms too) ii) (19/8,7/2,0)

b)
$$s = 14$$
, $t = 6$, intersect at $(13, 18, -4)$.

4. a) Method 1: Directional vector of line perpendicular to normal vector of plane, i.e. $\langle -2, 6, 2 \rangle \cdot \langle 1, 1, -2 \rangle = 0$. Therefore the line parallels to the plane.

Method 2: plug (x, y, z) of line to equation of the plane to get 5=9. This shows that line never intersects with the plane. Therefore they are parallel to each other.

b)
$$x + 3y - z = 14$$
.