The arithmetic-periodicity of CUT for $C = \{1, 2c\}$

Thotsaporn "Aek" Thanatipanonda (Joint work with Paul Ellis)

Mahidol University International College Nakhon Pathom, Thailand thotsaporn@gmail.com

Virtual Combinatorial Games Seminar November 16, 2022

Thotsaporn "Aek" Thanatipanonda

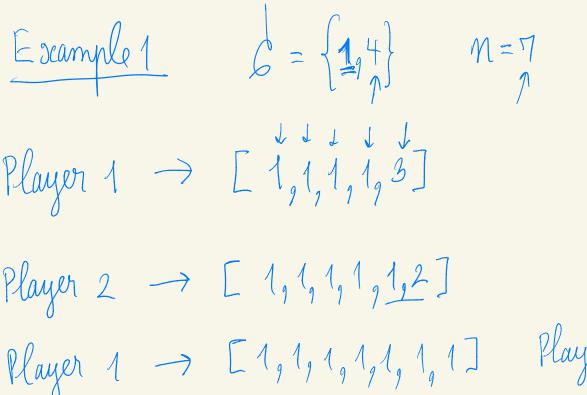
CUT for $C = \{1, 2c\}$

Combinatorial Games Seminar 1/21

CUT is a class of partition games played on a finite number of finite piles of tokens. Each version of cut is specified by a cut-set C. A legal move consists of selecting one of the piles and partitioning it into d + 1 nonempty piles, where $d \in C$. No tokens are removed from the game.

Two players: Impartial game (both player have the same options) with normal play (the player who makes the last legal move wins).

(4) (日本)



Player 1 roins.

Definitions

Definition

Given a pile of size n, an option O_n is a sequence of piles obtainable via a single legal move on that pile. In other words, O_n is a particular partition of n with d+1 parts for some $d \in C$. Formally, $O_n = (h_0, h_1, ..., h_d)$ where $1 \le h_i$ and $h_0 + h_1 + \cdots + h_d = n$. Let \mathcal{O}_n denote the set of all options O_n .

Definition

The nim-value of the option
$$O_n = (h_0, h_1, ..., h_d)$$
 is
 $\mathcal{G}(O_n) = \mathcal{G}(h_0) \oplus \mathcal{G}(h_1) \oplus \cdots \oplus \mathcal{G}(h_d).$

Finally the Sprague-Grundy Theorem tells us that the nim-value $\mathcal{G}(n)$ is given as

$$\mathcal{G}(n) = \max\{\mathcal{G}(O_n) \mid O_n \in \mathcal{O}_n\},\$$

where mex(S) is the least natural number missing from S.

Thotsaporn "Aek" Thanatipanonda

CUT for $\mathcal{C} = \{1, 2c\}$

Example 2
$$k = \{1,4\}$$

Find G (7) Given that
 $n | 1 | 2 | 3 | 4 | 5 | 6$
 $G(n) | 0 | 1 | 0 | 1 | 2 | 3$
 $T = 6 + 1, 5 + 2, 3 + 4$
 $1 + 1 + 1 + 1 + 3, 1 + 1 + 1 + 2 + 2$
 $Y ([6,1]) = Y(1) \oplus Y(1) = 3 \oplus 0 = 3$
 $G ([5,2]) = G(5) \oplus G(2) = 2 \oplus 1 = 3$
 $G ([5,43) = Y(3) \oplus Y(4) = 0 \oplus 1 = 1$
 $G ([1,1,1,2]) = G(1) \oplus (1) \oplus G(2) = 0$
 $G ([1,1,2,2]) = 0$
 $G ([1,1,2,2]) = 0$
 $G ([1,1,2,2]) = 0$

Previously known results

Some known results of CUT from Dailly, Duchêne, Larsson, Paris (2020). (CUT was defined pretty recently.)

Cut-set C	Nim sequence 🚣 🚣
$1 ot\in \mathcal{C}$	$(0)^{c}(+1)$ $b_{q_{1}}^{o}, b_{q_{1}}^{o}, b_{1}^{o}, b_{1}^{o}$
	where c is the smallest element in C
$m{1}\in \mathcal{C}$ and	$(0,1)_{\varrho(q)} \circ (0, 0)$
$\mathcal L$ contains only odd numbers	
$\{1,2,3\}\subseteq \mathcal{C}$	(0)(+1)
	(i.e. $\mathcal{G}(n) = n-1$)
$\mathcal{C} = \{1, 3, 2c\}$	$(0,1)^{c}(+2)$

All nim sequences here are arithmetic-periodic (AP).

CUT for $C = \{1, 2c\}$

< □ > < □ > < □ > < □ > < □ > < □ >

Third escample Assume 166, c contains only add number.
To show
$$G(n) = \begin{cases} 0 & \text{if } n \text{ is odd } J \end{cases}$$

To show $G(n) = \begin{cases} 1 & \text{if } n \text{ is even.} \end{cases}$
 $dax(1 = n \text{ is odd} \quad \text{odd} \quad \text{odd$

Case 2 n is even

Open Problem

Examples from DDLP on page 4

{1,2e} e72

Table 1

Some partition games for which the purely arithmetic-periodicity is proved with the AP-test.

	CUT-set	Sprague–Grundy sequence
ſ	$ \{1, 4\} \cup K with K \subseteq \{6, 8, 10\} $	$((0, 1)^2(2, 3)^2, 1, 4, 5, 4, (3, 2)^2(4, 5)^2(6, 7)^2)$ (+8)
1	$\{1, 6\} \cup K$ with $K \subseteq \{8, 10\}$	$((0, 1)^3(2, 3)^3, 1, 4, (5, 4)^2(3, 2)^3(4, 5)^3(6, 7)^3)$ (+8)
	{ <u>1.8</u> }	$((0, 1)^4(2, 3)^4, 1, 4, (5, 4)^3(3, 2)^4(4, 5)^4(6, 7)^4)$ (+8)
J	{1 <u>, 10}</u>	$((0, 1)^5(2, 3)^5, 1, 4, (5, 4)^4(3, 2)^5(4, 5)^5(6, 7)^5)$ (+8)
	··· ·· ··	

Open Problem 1. Given $c \ge 2$, the game $G(\mathcal{C})$ with $\mathcal{C} = \{1, 2c\}$ is arithmetic-periodic of length 12c and saltus 8.

Thotsaporn "Aek" Thanatipanonda

CUT for $C = \{1, 2c\}$

イロト 不得 トイラト イラト 一日

 $\{q, q, f\}$

0,1,0,1 2,3,2,3 1,4, 5,4 3,2,3,2 4 9 5 9 49 5 697967

Qq 3, 2q 3, 2g 3, 1,4,5,4,5,9 3, 2, 3, 2, 3, 2 4, 5, 4, 5, 4, 5 627 67697

The periodicity of each CUT C could be confirmed numerically (i.e. Theorem 9, DDLP and also in WWI, page 90). Hence the periodicity of $C = \{1, 2c\}, c = 2, 3, 4, 5$ has already been verified. It is left to show for general c:

Theorem ((Main Target) Ellis and T. 2022)

The nim-sequence of the game CUT with cut-set $C = \{1, 2c\}$ for any $c \ge 2$ is precisely

$$(0,1)^{c}(2,3)^{c},1,4,(5,4)^{c-1},(3,2)^{c}(4,5)^{c}(6,7)^{c}(+8).$$

Outline of the proof: Main Idea 1: Nim-set

The whole proof is quite long. I will highlight the important ideas/observations that we used.

$$g(G_n) = g(h_1) \oplus g(h_2) \oplus g(h_1)$$

Nim-set

Definition

The nim-set, $\mathcal{N}(n, p, \mathcal{C})$, is the set of nim values that arise from breaking n tokens into p piles. Formally, $\mathcal{N}(n, p, \mathcal{C}) = \{ \mathcal{G}(O_n) \mid O_n = (h_1, h_2, h_3, \dots, h_p) \text{ where } h_1 + h_2 + \dots + h_p = n \}.$

Instead of just looking at the nim values $\mathcal{G}(n)$, we look at the nim-set which these values are calculated from.

CUT for $\mathcal{C} = \{1, 2c\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main Idea 1: Nim-set: examples

Note that each nim-value in this set,

 $\mathcal{G}(O_n) = \mathcal{G}(h_1) \oplus \mathcal{G}(h_2) \oplus \cdots \oplus \mathcal{G}(h_p)$, is still calculated recursively according the actual rules of the game, that is, using the whole cut-set \mathcal{C} . As an initial observation, note that $\mathcal{N}(n, 1, \mathcal{C}) = \{\mathcal{G}_{\mathcal{C}}(n)\}$.

n	1	2	3	4	5	6	7	8	9	10	11
$\mathcal{N}(n, 2, \{1, 6\})$) –	{0}	$\{1\}$	{0}	{1}	{0}	$+ \{1\}$	{0,2}	{1,3}	} {0,2}	{1,3}
$\mathcal{N}(n,7,\{1,6\})$) -		-	-	-	-	{0}	$\{1\}$	{0}	$\{1\}$	{0}
$\mathcal{G}_{\{\underline{1},\underline{6}\}}(n)$	0	1	0	1	0	1	2	3	2	3	2
n	12	13		14	15		16	17		18	19
$\mathcal{N}(n, 2, \{1, 6\})$	{0,2}	- {3}	{0),1,2}	{0,1,3	5,4}	{0,1,2,5}	} {0,1,3	3,4} ·	{0,1,2,5}	{0,1,4}
$\mathcal{N}(n, 7, \{1, 6\})$	$\{1\}$	{0,2}	{	1,3}	{0,2}		{1,3}	{0,2}		{1,3}	$\{0,1,2\}$
$G_{\{1,6\}}(n)$	3	1		4	5		4	5		4	3

The first 19 nim-sets of CUT for $C = \{1, 6\}$

CUT for $C = \{1, 2c\}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Patterns, Patterns, Patterns!!!

After all , if the NIM-sequences for , lett say , C= (1,83 is going to be a "shift-exponded" version of the NEM-sequence for C= (1,6), then there is probably a correspondence between their NIM-sets, Right? Yes, but Not how you might expect. In fact, it is probably more than you expect ... For example, the initial values of the sequence $\mathcal{N}(n, 3, \{1, 6\})$ are and the initial values of the sequence $\mathcal{N}(n, \frac{3}{2}, \{1, 8\})$ are $\{\}, \{\}, \}$ $\{\}, \{\},$ {0}, {1}, **[0**], {1], {0}, {1}, $\{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{1,$ $\{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{0, 2\}, \{1, 3\}, \{1,$ [0, 1, 2], [0, 1, 3, 4], [0, 1, 2, 5], [0, 1, 3, 4], [0, 1, 2, 5], [0, 1, 3, 4] [0, 1, 2, 5], [0, 1, 3, 4] $\{0, 1, 2\}, \{0, 1, 3, 4\}, \{0, 1, 2, 5\}, \{0, 1, 3, 4\}, \{0, 1, 2, 5\}, \{0, 1, 3, 4\},$ But p=3 connesponds to 2EC, which is in the Ruleset of Neither game! In fact this connespondence holds for all C33, and all p=2.

Thotsaporn "Aek" Thanatipanonda

CUT for $\mathcal{C} = \{1, 2c\}$

< □ > < □ > < □ > < □ > < □ > < □ >

Main Idea 2: Exiting and entering partitions

When we further analyze the sequence of nim-sets for p = 2, we find that it is made up of alternating subsequences.

	g	(LI,J)		<mark>g[[フ,เ])</mark> 5 6 7 8 9 10							1			
п	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$\mathcal{N}(n, 2, \{1, 6\})$	-	0	1	0	1	0	1	0	1	0	1	0	3		
				-		ſ	1	2	3	2	3	2	3	2	3
								2						1	0
														0	1
															4

< □ > < 同 > < 回 > < 回 > < 回 >

Main Idea 2: Exiting and entering partitions

п	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$\mathcal{N}(n, 2, \{1, 6\})$															
-	2	3	2												
	1	0	1	0											
	0	1	0	1	0	1	0	1	0						
~	5	4	5	4	5	4	5	4	5						
					3	2	3	2	3	2	3	2	3	2	3
						6	7	6	7	6	7	6	7	6	7
											0				
											1	0	1	0	1
											4	5	4	5	4
													0	1	0

This is quite striking! There are underlying subsequences which alternate between \underline{a} and $\underline{a} \oplus 1$. Furthermore, these subsequences enter and exit the sequence at very particular partitions.

Thotsaporn "Aek" Thanatipanonda

CUT for $\mathcal{C} = \{1, 2c\}$

Combinatorial Games Seminar 11 / 21

イロト 不得 トイラト イラト 一日

Main Observation 1

Lemma

Assume main target holds up to n. Suppose $p \ge 4$ and $C = \{1, 2c\}, c \ge 2$. Then each exiting partition in $\mathcal{N}(n, p, C)$ has the same nim-value as some non-exiting partition in $\mathcal{N}(n, p, C)$.

So for $p \ge 4$, once one of these subsequences starts, it never ends. Formally:

Corollary (Cor 11 in the paper)

Assume main target holds up to n. For $p \ge 4, c \ge 2$, if $v \in \mathcal{N}(n, p, \{1, 2c\})$, then $v \oplus 1 \in \mathcal{N}(n+1, p, \{1, 2c\})$.

Thotsaporn "Aek" Thanatipanonda

CUT for $C = \{1, 2c\}$

イロト 不得 トイラト イラト 一日

Main Observation 1

*

Corollary (Cor 13 in the paper)

Assume main target holds up to n. For $p \ge 4$ and $c \ge 2$,

$$\mathcal{N}(n+1, p+1, \{1, 2c\}) = \mathcal{N}(n, p, \{1, 2c\}).$$

1

5

Thotsaporn "Aek" Thanatipanonda

CUT for $C = \{1, 2c\}$

Combinatorial Games Seminar 13/21

3

イロト イボト イヨト イヨト

Main result and Main Observation 2

The following theorem proved Open problem 1 from DDLP.

Theorem For $c \ge 3$ $\mathcal{G}_{\{\underline{1,2c}\}}(n) = \mathcal{G}_{\{\underline{1,6}\}}(\phi_1(n)).$

Note that $\phi_1(2cq + r) = 6q + r'$.

This theorem strongly based on the following definition and lemma.

(日)

Main Observation 2

Definition Given $1 \le r \le 2c$, define $r', 1 \le r' \le 6$ by $|u_{1}|r|$ 2 3 4 5 6 7 ... 2c - 3 2c - 2 2c - 1 2c $|u_{1}|r|$ 1 2 3 4 3 4 3 ... 3 4 5 6 Next suppose $p \ge 1$, $c \ge 3$, and $n \ge p$. Write n = k + p - 1 = 2cq + r + p - 1 with $1 \le r \le 2c$. Then for each $p \ge 1$, $n \ge p$, set

$$\phi_p(n) = \phi_p(2cq + r + p - 1) = 6q + r' + p - 1$$

Thotsaporn "Aek" Thanatipanonda

CUT for $C = \{1, 2c\}$

Combinatorial Games Seminar 15 / 21

3

イロト イポト イヨト イヨト

Main Observation 2: Strong lemma

We first prove that the ϕ correspondence holds on the corresponding nim-sets. This is quite surprising, as it is true for all p, not just p = 2 and p = 2c + 1.

Lemma

For $c \geq 3$ and $k \geq 1$, $p \geq 2$,

$$\mathcal{N}(\underline{k+p-1},\underline{p},\{\underline{1,2c}\}) = \mathcal{N}(\phi_p(\underline{k+p-1}),p,\{1,6\}).$$

This is, in my opinion, the longest part of the paper. We spent about 2/2 pages verifying the properties of ϕ . Then spending another 1.5 pages for this lemma.

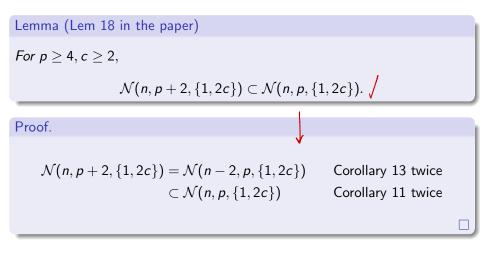
Thotsaporn "Aek" Thanatipanonda

CUT for $C = \{1, 2c\}$

Combinatorial Games Seminar 16 / 21

< ロ > < 同 > < 回 > < 回 > < 回 > <

An extension



CUT for $C = \{1, 2c\}$

イロト 不得 トイヨト イヨト 二日

An extension (continued)

Theorem (Thm 19 in the paper)

Let $C_1 = \{1, 2c_1, 2c_2, 2c_3, ...\}, c_1, c_2, ... \ge 2 \text{ and } C_2 = \{1, 2c\} \text{ where } c = \min\{c_1, c_2, c_3, ...\}.$ Then for $n \ge 1$,

$$\mathcal{G}_{\mathcal{C}_1}(n) = \mathcal{G}_{\mathcal{C}_2}(n).$$

Proof. We proceed by induction on *n*. For the base case, it is clear that $\mathcal{G}_{\mathcal{C}_1}(1) = \mathcal{G}_{\mathcal{C}_2}(1) = 0$. For the induction step, we assume the statement is true for all n' < n. This means that for any p > 1, $\mathcal{N}(n, p, \mathcal{C}_1) = \mathcal{N}(n, p, \mathcal{C}_2)$. Hence

$$\mathcal{G}_{\mathcal{C}_{1}}(n) = \max \left\{ \mathcal{N}(n, 2, \mathcal{C}_{1}) \cup \bigcup_{2c_{i} \in \mathcal{C}_{1}} \mathcal{N}(n, 2c_{i} + 1, \mathcal{C}_{1}) \right\}$$
$$= \max \left\{ \mathcal{N}(n, 2, \mathcal{C}_{2}) \cup \bigcup_{2c_{i} \in \mathcal{C}_{1}} \mathcal{N}(n, 2c_{i} + 1, \mathcal{C}_{2}) \right\}$$
$$= \max \{\mathcal{N}(n, 2, \mathcal{C}_{2}) \cup \mathcal{N}(n, 2c + 1, \mathcal{C}_{2})\}$$
Lemma 18
$$= \mathcal{G}_{\mathcal{C}_{2}}(n)$$

Thotsaporn "Aek" Thanatipanonda

CUT for $C = \{1, 2c\}$

Combinatorial Games Seminar 18 / 21

What's left?

In this section, we categorize the families of cut sets for which the nim-sequence of cut remains unknown. There are 4 such families. Let X to be a non-empty set of even numbers, each of which is at least 4. Let Y to be a non-empty set of odd numbers, each of which is at least 5. Let x = 2c and y be the smallest elements of X and Y, respectively. **Family A:** $C = \{1, 3\} \cup X$, or $C = \{1, 3\} \cup X \cup Y$ We already know from [3, Propositions 8] that the nim-sequence for $C = \{1, 3, 2c\}$ is $(0, 1)^{c}(+2)$. **Conjecture 1.** The nim-sequence for all games of CUT in this family are all precisely $(0, 1)^{c}(+2)$. Family B: $C = \{1\} \cup X \cup Y$ The nim-sequence of this family seems to have some resemblance to the nim-sequence for $C = \{1, 2c\}$ when $c \ge 2$, but we cannot make a full conjecture at this time. The following partial extension of Theorem 19 seems to be true. DDLP **Conjecture 2.** If 3x < y, then $\mathcal{G}_{\mathcal{C}}(n) = \mathcal{G}_{(1,x)}(n)$ for n > 1. We note that proving the arithmetic-periodicity of Families A and B would imply Conjecture 1 of [2]. Family C: $\{1, 2\} \subseteq C, 3 \notin C, C \neq \{1, 2\}$. It is not so clear how to categorize the patterns of this family. However, we do observe: **Conjecture 3.** The nim-sequence for all games of CUT in Family C are all ultimately arithmetic-periodic. **Family D:** $C = \{1, 2\}$ The first 36 terms of the nim-sequence for this game of CUT are 0. 7, 8. 11. 13. 18 It is supposed that the nim-sequence for this particular version of CUT is the most difficult to analyze. We also cannot find any pattern here. In [3], it was shown that this game is equivalent to the take-and-break game with hexadecimal code 0.7F. (日)

CUT for $C = \{1, 2c\}$

Open Problem 2. Is it true that every game $G(\mathcal{C})$ with $\mathcal{C} \neq \{1,2\}$ has a Sprague-Grundy sequence that is either ultimately periodic or ultimately arithmetic-periodic?

A first step to understand this problem would be to justify (or disprove) the following conjecture.

Conjecture 1. Every instance C of cut for which $\{1,2\} \not\subset C$ is (ultimately) arithmetic-periodic.

References

- M. Albert, R. Nowakowski, and D. Wolfe, Lessons In Play, An Introduction to Combinatorial Game Theory, A K Peters, Ltd., 2007.
- E. Berlekamp, J. H. Conway, and R. Guy, *Winning Ways for your Mathematical Plays*, Academic Press, New York, 1982.
- A. Dailly, E. Duchene, U. Larsson, G. Paris, *Partition Games*, Discrete Applied Mathematics **285** (2020), 509–525.

< □ > < □ > < □ > < □ > < □ > < □ >