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Impartial, Normal-Play, Games

CUT is a class of partition games played on a finite number of finite piles
of tokens. Each version of cut is specified by a cut-set C. A legal move
consists of selecting one of the piles and partitioning it into d + 1
nonempty piles, where d 2 C. No tokens are removed from the game.

Two players: Impartial game (both player have the same options) with
normal play (the player who makes the last legal move wins).
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Eseamplet 6={11%4} MY
↓ It ↓ ↓

Player 1 → [ 1,1 , 1,43 ]

Player 2 → [ 1,441,11 ]

Player 1 → [ 1,111,11 , 1,1 ] Player twins .



Definitions

Definition

Given a pile of size n, an option On is a sequence of piles obtainable via a
single legal move on that pile. In other words, On is a particular partition
of n with d +1 parts for some d 2 C. Formally, On = (h0, h1, ..., hd) where
1  hi and h0+ h1+ · · ·+ hd = n. Let On denote the set of all options On.

Definition

The nim-value of the option On = (h0, h1, ..., hd) is

G(On) = G(h0)� G(h1)� · · ·� G(hd).

Finally the Sprague-Grundy Theorem tells us that the nim-value G(n) is
given as

G(n) = mex{G(On) | On 2 On},

where mex(S) is the least natural number missing from S .
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Examples 1={1%1}
Find Girl Given that

&:*¥¥↑ ↑ ↑
7=6-11,5-12,3+4
=

1-11-11 -11+3,1+1+1 -12+2

Y( [ 6,1 ] ) = gd1④g( 1)
= 3+00 =3

g. (Ep] )
= gcs) ④ got

= 2@ 1 =3

g( [3,431 = got ④ YUI = 0+01=1

g (
[ 41941,3] / = gate . . -10gal )④glB120

g ( Eliot , 2,2
] ) = 0

g% = Mex { 3,3, 1,90 } - 2 /



Previously known results

Some known results of CUT from Dailly, Duchêne, Larsson, Paris (2020).
(CUT was defined pretty recently.)

Cut-set C Nim sequence
1 62 C (0)c(+1)

where c is the smallest element in C

1 2 C and (0, 1)
C contains only odd numbers

{1, 2, 3} ✓ C (0)(+1)
(i.e. G(n) = n � 1)

C = {1, 3, 2c} (0, 1)c(+2)

All nim sequences here are arithmetic-periodic (AP).
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Thindeseample Assume ↓
,
teontaim only add number .
=

Farhad gem
= { ◦ if nisaddf1 if mis even .

day n=is% ¥
Gm = [add , add , ayroddqlvenna , even ]

→
even parts ✓ by induction _onn

.

gigi = a ④ '

+0%2+01--1

gcn ) = Mlk { 41,1 quit } = 0
.

Casey mis even
" i



Open Problem

Examples from DDLP on page 4

Open Problem 1. Given c � 2, the game G (C) with C = {1, 2c} is
arithmetic-periodic of length 12c and saltus 8.
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4,4 } onion
"" }
⑧ 491991

43,2 , } 02*3,4%431

114,594 1*14%4,594

3,293,2 3,293,2%2
415,95 4,594,514,5
6,749 6144449



Our contribution

The periodicity of each CUT C could be confirmed numerically (i.e.
Theorem 9, DDLP and also in WWI, page 90). Hence the periodicity of
C = {1, 2c}, c = 2, 3, 4, 5 has already been verified. It is left to show for
general c :

Theorem ((Main Target) Ellis and T. 2022)

The nim-sequence of the game cut with cut-set C = {1, 2c} for any

c � 2 is precisely

(0, 1)c(2, 3)c , 1, 4, (5, 4)c�1, (3, 2)c(4, 5)c(6, 7)c(+8).
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Outline of the proof: Main Idea 1: Nim-set

The whole proof is quite long. I will highlight the important
ideas/observations that we used.

Nim-set

Definition

The nim-set, N (n, p, C), is the set of nim values that arise from breaking n

tokens into p piles. Formally,

N (n, p, C) = {G(On) | On = (h1, h2, h3, . . . , hp) where h1+h2+· · ·+hp = n}.

Instead of just looking at the nim values G(n), we look at the nim-set
which these values are calculated from.
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Main Idea 1: Nim-set: examples

Note that each nim-value in this set,
G(On) = G(h1)� G(h2)� · · ·� G(hp), is still calculated recursively
according the actual rules of the game, that is, using the whole cut-set C.
As an initial observation, note that N (n, 1, C) = {GC(n)}.

n 1 2 3 4 5 6 7 8 9 10 11
N (n, 2, {1, 6}) - {0} {1} {0} {1} {0} {1} {0,2} {1,3} {0,2} {1,3}
N (n, 7, {1, 6}) - - - - - - {0} {1} {0} {1} {0}

G{1,6}(n) 0 1 0 1 0 1 2 3 2 3 2
n 12 13 14 15 16 17 18 19

N (n, 2, {1, 6}) {0,2} {3} {0,1,2} {0,1,3,4} {0,1,2,5} {0,1,3,4} {0,1,2,5} {0,1,4}
N (n, 7, {1, 6}) {1} {0,2} {1,3} {0,2} {1,3} {0,2} {1,3} {0,1,2}

G{1,6}(n) 3 1 4 5 4 5 4 3

The first 19 nim-sets of CUT for C = {1, 6}
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Patterns, Patterns, Patterns!!!
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Main Idea 2: Exiting and entering partitions

When we further analyze the sequence of nim-sets for p = 2, we find that
it is made up of alternating subsequences.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
N (n, 2, {1, 6}) - 0 1 0 1 0 1 0 1 0 1 0

2 3 2 3 2 3 2 3
1 0
0 1

4
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Main Idea 2: Exiting and entering partitions

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
N (n, 2, {1, 6})

2 3 2
1 0 1 0
0 1 0 1 0 1 0 1 0
5 4 5 4 5 4 5 4 5

3 2 3 2 3 2 3 2 3 2 3
6 7 6 7 6 7 6 7 6 7

0
1 0 1 0 1
4 5 4 5 4

0 1 0

This is quite striking! There are underlying subsequences which alternate
between a and a� 1. Furthermore, these subsequences enter and exit the
sequence at very particular partitions.
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Main Observation 1

Lemma

Assume main target holds up to n. Suppose p � 4 and

C = {1, 2c}, c � 2. Then each exiting partition in N (n, p, C) has the same

nim-value as some non-exiting partition in N (n, p, C).

So for p � 4, once one of these subsequences starts, it never ends.
Formally:

Corollary (Cor 11 in the paper)

Assume main target holds up to n. For p � 4, c � 2, if
v 2 N (n, p, {1, 2c}), then v � 1 2 N (n + 1, p, {1, 2c}).
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Main Observation 1

Corollary (Cor 13 in the paper)

Assume main target holds up to n. For p � 4 and c � 2,

N (n + 1, p + 1, {1, 2c}) = N (n, p, {1, 2c}).
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Main result and Main Observation 2

The following theorem proved Open problem 1 from DDLP.

Theorem

For c � 3
G{1,2c}(n) = G{1,6}(�1(n)).

Note that �1(2cq + r) = 6q + r
0.

This theorem strongly based on the following definition and lemma.
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Main Observation 2

Definition

Given 1  r  2c , define r
0, 1  r

0
 6 by

r 1 2 3 4 5 6 7 . . . 2c � 3 2c � 2 2c � 1 2c
r
0 1 2 3 4 3 4 3 . . . 3 4 5 6

Next suppose p � 1, c � 3, and n � p. Write
n = k + p � 1 = 2cq + r + p � 1 with 1  r  2c . Then for each p � 1,
n � p, set

�p(n) = �p(2cq + r + p � 1) = 6q + r
0 + p � 1
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Main Observation 2: Strong lemma

We first prove that the � correspondence holds on the corresponding
nim-sets. This is quite surprising, as it is true for all p, not just p = 2 and
p = 2c + 1.

Lemma

For c � 3 and k � 1, p � 2,

N (k + p � 1, p, {1, 2c}) = N (�p(k + p � 1), p, {1, 6}).

This is, in my opinion, the longest part of the paper. We spent about 2
pages verifying the properties of �. Then spending another 1.5 pages for
this lemma.
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An extension

Lemma (Lem 18 in the paper)

For p � 4, c � 2,

N (n, p + 2, {1, 2c}) ⇢ N (n, p, {1, 2c}).

Proof.

N (n, p + 2, {1, 2c}) = N (n � 2, p, {1, 2c}) Corollary 13 twice

⇢ N (n, p, {1, 2c}) Corollary 11 twice
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An extension (continued)

Theorem (Thm 19 in the paper)

Let C1 = {1, 2c1, 2c2, 2c3, ...}, c1, c2, ... � 2 and C2 = {1, 2c} where

c = min{c1, c2, c3, . . . }. Then for n � 1,

GC1(n) = GC2(n).

Thotsaporn “Aek” Thanatipanonda CUT for C = {1, 2c} Combinatorial Games Seminar 18 / 21

I.
_

↓

↓
•

=



What’s left?
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Other problems from DDLP

Open Problem 2. Is it true that every game G (C) with C 6= {1, 2} has a
Sprague-Grundy sequence that is either ultimately periodic or ultimately
arithmetic-periodic?

A first step to understand this problem would be to justify (or disprove)
the following conjecture.

Conjecture 1. Every instance C of cut for which {1, 2} 6⇢ C is (ultimately)
arithmetic-periodic.
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